Ultrasonik destekli derin çekme işlemi: İki aşamalı sonlu elemanlar analizi ve deneysel doğrulaması
Yıl 2023,
Cilt: 38 Sayı: 1, 257 - 268, 21.06.2022
Sadık Olguner
,
A. Tolga Bozdana
Öz
Bu çalışmada, Geleneksel Derin Çekme Yöntemi'nde sac metal malzemelerin şekillendirilebilirliğini iyileştirebilmek adına Ultrasonik Destekli Derin Çekme Yöntemi geliştirilmiştir. Derin çekme işleminde baskı plakasına eksenel yönde uygulanan ultrasonik titreşimlerin malzemenin şekillendirilebilirliğine etkileri sonlu elemanlar analizleriyle nümerik olarak araştırılmış, elde edilen sonuçlar derin çekme deneyleriyle doğrulanmıştır. Nümerik çalışmada, zamana bağlı yapısal ve şekillendirme analizlerini içeren iki aşamalı sonlu elemanlar analizini içeren metodoloji geliştirilmiştir. Geleneksel ve ultrasonik destekli derin çekme analizlerinde, belirli işlem parametrelerine maruz kalan DC01 ve DC04 malzemelerin sınır çekme oranları ve maksimum çekilebilir kupa derinlikleri kıyaslanmıştır. Ultrasonik titreşimlerin etkisiyle sınır çekme oranında %9’a, kupa derinliğinde ise %26’ya varan artış sağlanmıştır. Aynı çapa sahip dairesel malzemeler üzerinde gerçekleştirilen analizlerde, sac malzemedeki incelmenin %43’e varan oranda azaldığı tespit edilmiştir. Doğrulama deneyleri neticesinde sınır çekme oranında ve kupa derinliğindeki artış oranları ise sırasıyla %11 ve %31 olarak gerçekleşmiştir. Ultrasonik titreşimlerin dinamik darbe, gerilme süperpozisyonu ve temas ayrılması etkileri, önerilen yöntemle sonlu elemanlar analizlerinde etkin bir şekilde modellenebildiğinden nümerik analiz sonuçlarının deneysel sonuçlarla iyi bir uyum içinde olduğu görülmüştür. Buradaki küçük farkların, ultrasonik titreşimlerin malzeme üzerindeki akustik yumuşatma ve sürtünme katsayısını azaltma etkilerinin nümerik modele aktarılamamasından kaynaklandığı düşünülmektedir.
Destekleyen Kurum
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)
Teşekkür
Bu çalışma, 315M300 proje numarası ile Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir. Yazarlar, destekleri için TÜBİTAK’a teşekkür ederler.
Kaynakça
- 1. Blaha F., Langenecker B., Dehnung von zink-kristallen unter ultraschalleillwirkung, Z. Naturwiss., 20, 556, 1955.
- 2. Fartashvand V., Abdullah A., Vanini S.A.S., Investigation of Ti-6Al-4V alloy acoustic softening, Ultrasonics Sonochemistry, 38, 744-749, 2017.
- 3. Dauda Y., Lucas M., Huang Z., Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, Journal of Materials Processing Technology, 186, 179–190, 2007.
- 4. Hu J., Shimizu T., Yang, M., Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact, Ultrasonics-Sonochemistry, 48, 240-248, 2018.
- 5. Langenecker B., Effects of ultrasound on deformation characteristics of metals, IEEE Transactions on Sonics and Ultrasonics, 13, 1-8, 1966.
- 6. Yao Z., Kim G.Y., Wanga Z., Faidley L., Zou Q., Mei D., Chen Z., Acoustic softening and residual hardening in aluminum: Modeling and experiments, International Journal of Plasticity, 39, 75-87, 2012.
- 7. Lehfeldt E., Influence of ultrasonic vibration on metallic friction, The Journal of the Acoustical Society of America, 45, 334, 1969.
- 8. Kumar V.C., Hutchings I.M., Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration, Tribology International, 37, 833–840, 2004.
- 9. Cao M., Li J., Liu Y., Yuan Y., Zhao C., Dong G., Frictional characteristics of sheet metals with superimposed ultrasonic vibrations, J. Cent. South Univ., 25, 1879-1887, 2018.
- 10. Biddell D.C., Sansome D.H., Deep drawing of cans with ultrasonic radial oscillations applied to the die, Ultrason Int. Conf., London-England, 27-29 March 1973.
- 11. Young M.J.R., Sansome D.H., An ascillatory deep-drawing analogue, Proceedings of the Fifteenth International Machine Tool Design and Research Conference, Editors: Tobias S.A., Koenigsberger F., Palgrave Macmillan Publishers Limited, London, 551-559, 1975.
- 12. Biddell D.C., Ultrasonic deep-drawing and ironing with the aid of flat and profiled radial resonators, Acta Acustica, 45 (1), 14-24, 1980.
- 13. Smith A.W., An investigation of the deep drawing process with the application of ultrasonic oscillations, PhD. Thesis, The University of Aston, Birmingham, England, 1977.
- 14. Jimma T., Kasuga Y., Iwaki N., Miyazawa O., Mori E., Ito K., Hatano H., An application of ultrasonic vibration to the deep drawing process, Journal of Materials Processing Technology, 80-81, 406-412, 1998.
- 15. Wen T., Gao R., Chen X., Influence of high frequency vibration on deep drawing process of AZ31 sheet at room temperature, Journal of Shanghai Jiaotong University, 17, 456-460, 2012.
- 16. Yamazaki T., Hayakawa C., Kodama M., Jin M., Deep drawing with ultrasonic vibration, Journal of the JSTP, 54, 47-51, 2013.
- 17. Chu T.H., Fuh K.H., Yeh W.C., Modelling and analysis of deep drawing with utilization of vibrations and servo press using response surface methodology, Materials Research Innovations, 18, 936-939, 2014.
- 18. Cao M., Li J., Yuan Y., Zhao C., Flexible die drawing of magnesium alloy sheet by superimposing ultrasonic vibration, Trans. Nonferrous Met. Soc. China, 27, 163-171, 2017.
- 19. Çavuşoğlu O., Gürün H., Investigation of the effects of deformation speed on the mechanical properties and deep drawing process of DP600 and DP780 sheet metal, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4), 777-784, 2014.
- 20. Ankaralı M.S., Dilmeç M., Türköz M., Investigation on the effect of use of movable die in sheet hydroforming with die on formability, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 787-801, 2020.
- 21. Olguner S., Bozdana A.T., Influence of press ram pulsation on deep drawability of dual phase steel sheet, Acta Physica Polonica A, 132 (3), 742-745, 2017.
- 22. Ashida Y., Aoyama H., Press forming using ultrasonic vibration, Journal of Materials Processing Technology, 187-188, 118-122, 2007.
- 23. Siddiq A., El Sayed T., Ultrasonic assisted manufacturing processes: Variational model and numerical simulations, Ultrasonics, 52, 521-529, 2012.
- 24. Kim S.W., Son Y.G., Lee Y.S., FEA and experiment investigation on the friction reduction for ultrasonic vibration assisted deep drawing, Transactions of Materials Processing, 23, 413-418, 2014.
- 25. Kim S.W., Lee Y.S., Investigations on the effect of ultrasonic vibration in cylindrical cup drawing processes, Key Engineering Materials, 622-623, 1152-1157, 2014.
- 26. Sheykholeslami M., Cinquemani S., Mazdak S., Numerical study of the of ultrasonic vibration in deep drawing process of circular sections with rubber die, SPIE Active and Passive Smart Structures and Integrated Systems XII, Denver-Colorado, USA, 15 March 2018.
- 27. Malekipour E., Heidary H., Majd N.S., Mazdak S., Sharifi E., Effect of resonant frequency variation on the ultrasonically assisted deep drawing process: numerical and experimental study, The International Journal of Advanced Manufacturing Technology, 106, 2243-2264, 2020.
- 28. BS EN 10130, Cold rolled low carbon steel flat products for cold forming. Technical delivery conditions, 2006.
- 29. Sheet Metal Product Catalogue. Erdemir Group, Kdz. Ereğli, Turkey, 2017.
- 30. BS EN ISO 10113, Metallic materials - Sheet and strip - Determination of plastic strain ratio, 2014.
- 31. BS EN ISO 6892-1, Metallic materials - Tensile testing. Part 1: Method of test at room temperature, 2016.
- 32. Wang W., Chang H., Zhao Z., Wei X., The limit drawing ratio and formability prediction of advanced high strength dual-phase steels, Materials and Design, 32, 3320-3327, 2011.
- 33. Hallquist J.O., Ls-Dyna Theory Manual, LSTC, Livermore, California, USA, 2006.
- 34. Bandyopadhyay K., Panda S.K., Saha P., Padmanabham G., Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation, Journal of Materials Processing Technology, 217, 48-64, 2015.
- 35. Barlat F., Lian K., Plastic behavior and stretch ability of sheet metals. Part I. A yield function for orthotropic sheets under plane stress conditions, Int. J. Plast., 5(1), 51-66, 1989.
Ultrasonically assisted deep drawing process: Two-stage finite element analysis and experimental verification
Yıl 2023,
Cilt: 38 Sayı: 1, 257 - 268, 21.06.2022
Sadık Olguner
,
A. Tolga Bozdana
Öz
In this study, Ultrasonically Assisted Deep Drawing Process was developed in order to improve formability of sheet metals in Conventional Deep Drawing Process. Effects of ultrasonic vibrations, applied onto the blank holder in axial direction, on formability of sheet metal were investigated numerically by finite element analyses, and the results of such analyses were verified by deep drawing experiments. In the numerical study, a methodology for two-stage finite element analyses including transient structural and forming analysis was developed. In conventional and ultrasonically assisted deep drawing analyses, limiting drawing ratios and maximum drawable cup depths for DC01 and DC04 materials prone to certain process parameters were compared. With application of ultrasonic vibrations, an increase of up to 9% in limiting drawing ratio and up to 26% in cup depth were achieved. In the analyses performed on circular materials of identical diameters, it was determined that the thinning on sheet metal decreased by up to 43%. As result of the validation experiments, increase in limiting drawing ratio and cup depth was achieved as 11% and 31%, respectively. Numerical results were found to be in good agreement with experimental results since dynamic impact, stress superposition and contact separation effects of ultrasonic vibrations could be effectively modeled in finite element analyses with the proposed method. Small differences in obtained results may be due to the reason that it was not possible to involve the effects of acoustic softening and friction coefficient reduction on the material in numerical analyses.
Kaynakça
- 1. Blaha F., Langenecker B., Dehnung von zink-kristallen unter ultraschalleillwirkung, Z. Naturwiss., 20, 556, 1955.
- 2. Fartashvand V., Abdullah A., Vanini S.A.S., Investigation of Ti-6Al-4V alloy acoustic softening, Ultrasonics Sonochemistry, 38, 744-749, 2017.
- 3. Dauda Y., Lucas M., Huang Z., Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, Journal of Materials Processing Technology, 186, 179–190, 2007.
- 4. Hu J., Shimizu T., Yang, M., Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact, Ultrasonics-Sonochemistry, 48, 240-248, 2018.
- 5. Langenecker B., Effects of ultrasound on deformation characteristics of metals, IEEE Transactions on Sonics and Ultrasonics, 13, 1-8, 1966.
- 6. Yao Z., Kim G.Y., Wanga Z., Faidley L., Zou Q., Mei D., Chen Z., Acoustic softening and residual hardening in aluminum: Modeling and experiments, International Journal of Plasticity, 39, 75-87, 2012.
- 7. Lehfeldt E., Influence of ultrasonic vibration on metallic friction, The Journal of the Acoustical Society of America, 45, 334, 1969.
- 8. Kumar V.C., Hutchings I.M., Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration, Tribology International, 37, 833–840, 2004.
- 9. Cao M., Li J., Liu Y., Yuan Y., Zhao C., Dong G., Frictional characteristics of sheet metals with superimposed ultrasonic vibrations, J. Cent. South Univ., 25, 1879-1887, 2018.
- 10. Biddell D.C., Sansome D.H., Deep drawing of cans with ultrasonic radial oscillations applied to the die, Ultrason Int. Conf., London-England, 27-29 March 1973.
- 11. Young M.J.R., Sansome D.H., An ascillatory deep-drawing analogue, Proceedings of the Fifteenth International Machine Tool Design and Research Conference, Editors: Tobias S.A., Koenigsberger F., Palgrave Macmillan Publishers Limited, London, 551-559, 1975.
- 12. Biddell D.C., Ultrasonic deep-drawing and ironing with the aid of flat and profiled radial resonators, Acta Acustica, 45 (1), 14-24, 1980.
- 13. Smith A.W., An investigation of the deep drawing process with the application of ultrasonic oscillations, PhD. Thesis, The University of Aston, Birmingham, England, 1977.
- 14. Jimma T., Kasuga Y., Iwaki N., Miyazawa O., Mori E., Ito K., Hatano H., An application of ultrasonic vibration to the deep drawing process, Journal of Materials Processing Technology, 80-81, 406-412, 1998.
- 15. Wen T., Gao R., Chen X., Influence of high frequency vibration on deep drawing process of AZ31 sheet at room temperature, Journal of Shanghai Jiaotong University, 17, 456-460, 2012.
- 16. Yamazaki T., Hayakawa C., Kodama M., Jin M., Deep drawing with ultrasonic vibration, Journal of the JSTP, 54, 47-51, 2013.
- 17. Chu T.H., Fuh K.H., Yeh W.C., Modelling and analysis of deep drawing with utilization of vibrations and servo press using response surface methodology, Materials Research Innovations, 18, 936-939, 2014.
- 18. Cao M., Li J., Yuan Y., Zhao C., Flexible die drawing of magnesium alloy sheet by superimposing ultrasonic vibration, Trans. Nonferrous Met. Soc. China, 27, 163-171, 2017.
- 19. Çavuşoğlu O., Gürün H., Investigation of the effects of deformation speed on the mechanical properties and deep drawing process of DP600 and DP780 sheet metal, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (4), 777-784, 2014.
- 20. Ankaralı M.S., Dilmeç M., Türköz M., Investigation on the effect of use of movable die in sheet hydroforming with die on formability, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 787-801, 2020.
- 21. Olguner S., Bozdana A.T., Influence of press ram pulsation on deep drawability of dual phase steel sheet, Acta Physica Polonica A, 132 (3), 742-745, 2017.
- 22. Ashida Y., Aoyama H., Press forming using ultrasonic vibration, Journal of Materials Processing Technology, 187-188, 118-122, 2007.
- 23. Siddiq A., El Sayed T., Ultrasonic assisted manufacturing processes: Variational model and numerical simulations, Ultrasonics, 52, 521-529, 2012.
- 24. Kim S.W., Son Y.G., Lee Y.S., FEA and experiment investigation on the friction reduction for ultrasonic vibration assisted deep drawing, Transactions of Materials Processing, 23, 413-418, 2014.
- 25. Kim S.W., Lee Y.S., Investigations on the effect of ultrasonic vibration in cylindrical cup drawing processes, Key Engineering Materials, 622-623, 1152-1157, 2014.
- 26. Sheykholeslami M., Cinquemani S., Mazdak S., Numerical study of the of ultrasonic vibration in deep drawing process of circular sections with rubber die, SPIE Active and Passive Smart Structures and Integrated Systems XII, Denver-Colorado, USA, 15 March 2018.
- 27. Malekipour E., Heidary H., Majd N.S., Mazdak S., Sharifi E., Effect of resonant frequency variation on the ultrasonically assisted deep drawing process: numerical and experimental study, The International Journal of Advanced Manufacturing Technology, 106, 2243-2264, 2020.
- 28. BS EN 10130, Cold rolled low carbon steel flat products for cold forming. Technical delivery conditions, 2006.
- 29. Sheet Metal Product Catalogue. Erdemir Group, Kdz. Ereğli, Turkey, 2017.
- 30. BS EN ISO 10113, Metallic materials - Sheet and strip - Determination of plastic strain ratio, 2014.
- 31. BS EN ISO 6892-1, Metallic materials - Tensile testing. Part 1: Method of test at room temperature, 2016.
- 32. Wang W., Chang H., Zhao Z., Wei X., The limit drawing ratio and formability prediction of advanced high strength dual-phase steels, Materials and Design, 32, 3320-3327, 2011.
- 33. Hallquist J.O., Ls-Dyna Theory Manual, LSTC, Livermore, California, USA, 2006.
- 34. Bandyopadhyay K., Panda S.K., Saha P., Padmanabham G., Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation, Journal of Materials Processing Technology, 217, 48-64, 2015.
- 35. Barlat F., Lian K., Plastic behavior and stretch ability of sheet metals. Part I. A yield function for orthotropic sheets under plane stress conditions, Int. J. Plast., 5(1), 51-66, 1989.