With the developing technology, Additive manufacturing technique has become one of the manufacturing fields, the importance of which is increasing day by day in different fields. In the additive manufacturing , the object to be produced is produced/spread out layer by layer. This method has many different abilities, some of these advantage are; complex parts can be produced, low cost, relatively high speed of production. Additive manufacturing technology is widely used in different industries such as aviation, automotive and biomedical due to its superior properties. Because of these advantages, additive manufacturing method is expected to replace subtractive manufacturing methods in the near future. Due to its widespread use in different fields, the examination of review studies is important in order to up to date the current progress of the title.. In this study, it is aimed to convey the current developments in the field of wearable technology (especially sensors and biomaterials).
1. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry. 2010 June 25;: p. 8446-8453.
2. Gamota D, Brazis P, Kalyanasund K, Zhang J. Printed organic and molecular electronics Berlin: Springer; 2004.
3. Karabulut Y., Eklemeli imalat yöntemiyle üretilen farklı cidar kalınlıklarında üretilen inconel 718 alaşım malzemesine uygulanan ikincil işlemlerin malzemenin mekanik özelliklerine etkisinin incelenmesi. Marmara Üniversitesi, fen bilimleri Enstitüsü, 2020.
4. Kantola V, Kulovesi J, Lahti L, Lin R, Zavodchikova M, Coatanea E. Printed electronics, Now and Future. Bit Bang. 2009;: p. 63-105.
5. Gebel M., (2018). Polimer matrisli sürekli fiber takviyeli kompozit parça üretimi için bir eklemeli imalat yönteminin geliştirilmesi. Yüksek lisans tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
6. Özdoğan S., (2021). Eklemeli imalat yöntemleriyle üretilen parçaların baskı parametrelerinin üç-nokta-eğilme davranişlarina etkisinin incelenmesi. Yüksek lisans tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Konya.
7. Song, P., Wang, G., & Zhang, Y. (2021). Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators, A: Physical, 323, 112659. https://doi.org/10.1016/j.sna.2021.112659
12. Zhou, Z., He, Z., Yin, S., Xie, X., & Yuan, W. (2021). Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Composites Part B: Engineering, 220(April), 108984. https://doi.org/10.1016/j.compositesb.2021.108984
13. Shen, X., Zhao, S., & Wan, A. (2021). A sensitive and flexible sensor enhanced by constructing graphene-based polyaniline conductive networks. Sensors and Actuators, A: Physical, 330, 112862. https://doi.org/10.1016/j.sna.2021.112862
14. Zhang, Y., & Cui, Y. (2019). A flexible calligraphy-integrated in situ humidity sensor. Measurement: Journal of the International Measurement Confederation, 147, 106853. https://doi.org/10.1016/j.measurement.2019.106853
15. Annabestani, M., Esmaili-dokht, P., Olianasab, S. A., Orouji, N., & Alipour, Z. (n.d.). A novel fully 3D , microfluidic-oriented , gel-based and low cost stretchable soft sensor. 1–11.
16. Zhang, R., Lv, A., Ying, C., Hu, Z., Hu, H., Chen, H., Liu, Q., Fu, X., Hu, S., & Wong, C. P. (2020). Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 186(October 2019), 1–7. https://doi.org/10.1016/j.compscitech.2019.107933
17. Xiong y., Shen Y. Tian L., Hu Y., Zhu P., Sun. R., Wong C. P.(2020). A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano energy. 70 (October 2020), 104436.
18. Sobolewski P.,, Goszczyńska A.,, Aleksandrzak M., Urbaś K., Derkowska J., Bartoszewska A., Podolski J., Mijowska E. and El Fray M., ‘’ A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite’’
19. Van Driessche, I., Feys, J., Hopkins, S. C., Lommens, P., Granados, X., Glowacki, B. A., Ricart, S., Holzapfel, B., Vilardell, M., Kirchner, A., & Bäcker, M. (2012). Chemical solution deposition using ink-jet printing for YBCO coated conductors. Superconductor Science and Technology, 25(6). https://doi.org/10.1088/0953-2048/25/6/065017
20. Jabari, E., & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321–329. https://doi.org/10.1016/j.carbon.2015.04.094
21. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
22. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.10109
23. Allanurov, A. M., Zdrok, A. Y., Loschilov, A. G., & Malyutin, N. D. (2014). Problem of Ink Evaporation while Using Plotter Systems to Manufacture Printed Electronic Products. Procedia Technology, 18(September), 19–24. https://doi.org/10.1016/j.protcy.2014.11.006
24. Zang, Z., Tang, X., Liu, X., Lei, X., & Chen, W. (2014). Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique. Applied Optics, 53(33), 7868. https://doi.org/10.1364/ao.53.007868
25. Larson, B. J., Gillmor, S. D., & Lagally, M. G. (2004). Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Review of Scientific Instruments, 75(4), 832–836. https://doi.org/10.1063/1.1688436
26. Demiröz Ö. B., (2021). Eklemeli imalat ile yüzeyi güçlendirilen termoelektrik modül yüzeyindeki ısı dağılım etkisinin analizi. Yüksek lisans tezi. İstanbul Gedik Üniversitesi. İstanbul.
27. Aktürk M., (2021). Eklemeli imalat yöntemi ile üretilmiş AlSi10Mg malzemesinin malzeme yapısal parametrelerinin belirlenmesi ve sonlu elemanlar yöntemiyle doğrulanması. Yüksek Lisans Tezi. Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük.
28. Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, 106794. https://doi.org/10.1016/j.jcsr.2021.106794
29. Top N., (2019). Doku mühendisliği için eklemeli imalat kullanılarak yeni bir kemik iskelesi tasarımı ve üretimi. Yüksek lisans tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
30. Claudia, E., Fischer, D., & Nickel, D. (2021). Challenges in electroplating of additive manufactured ABS plastics. 68(June), 1378–1386. https://doi.org/10.1016/j.jmapro.2021.06.037
31. Tsushima, N., Tamayama, M., Arizono, H., & Makihara, K. (2021). Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing. Aerospace Science and Technology, 117, 106923. https://doi.org/10.1016/j.ast.2021.106923
32. ATALAY Y., (2020). Hybrid additive manufacturing by shaped metal deposition. Yüksek lisans tezi. Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
33. Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). Materials Today : Proceedings The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.596
34. Bhatia, A., & Sehgal, A. K. (2021). Materials Today : Proceedings Additive manufacturing materials , methods and applications : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.379
35. Hashmi, A. W., & Meena, A. (2021). Materials Today : Proceedings Improving the surface characteristics of additively manufactured parts : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.223
36. Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346.
37. Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583.
38. Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726.
39. Postiglione G. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15.
40. Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
41. Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(February), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
42. Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
43. Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
44. Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
45. Putra, N. E., Leeflang, M. A., Taheri, P., Fratila-Apachitei, L. E., Mol, J. M. C., Zhou, J., & Zadpoor, A. A. (2021). Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 134(xxxx), 774–790. https://doi.org/10.1016/j.actbio.2021.07.042
46. Lin, Z., Jiang, T., Kinsella, J. M., Shang, J., & Luo, Z. (2021). Assessing roughness of extrusion printed soft materials using a semi-quantitative method. Materials Letters, 303(July), 130480. https://doi.org/10.1016/j.matlet.2021.130480
47. Diba, M., Koons, G. L., Bedell, M. L., & Mikos, A. G. (2021). 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 274(April), 120871. https://doi.org/10.1016/j.biomaterials.2021.120871
48. Kim, M. H., & Nam, S. Y. (2020). Assessment of coaxial printability for extrusion-based bioprinting of alginate-based tubular constructs. Bioprinting, 20(July), e00092. https://doi.org/10.1016/j.bprint.2020.e00092
49. ong, K., Zhang, D., Yin, J., & Huang, Y. (2021). Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 41(January), 101963. https://doi.org/10.1016/j.addma.2021.101963
50. Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M., & Petrov, P. D. (2021). Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydrate Polymers, 260(January), 117793. https://doi.org/10.1016/j.carbpol.2021.117793
51. Sakai, S., Yoshii, A., Sakurai, S., Horii, K., & Nagasuna, O. (2020). Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 8(July). https://doi.org/10.1016/j.mtbio.2020.100078
52. Ginestra, P. S., Rovetta, R., Fiorentino, A., & Ceretti, E. (2020). Bioprinting process optimization: Evaluation of parameters influence on the extrusion of inorganic polymers. Procedia CIRP, 89, 104–109. https://doi.org/10.1016/j.procir.2020.05.125
53. Kim, M. H., Lee, Y. W., Jung, W. K., Oh, J., & Nam, S. Y. (2019). Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 98(February), 187–194. https://doi.org/10.1016/j.jmbbm.2019.06.014
54. Liu, S., Mo, L., Bi, G., Chen, S., Yan, D., Yang, J., Jia, Y. G., & Ren, L. (2021). DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceramics International, 47(15), 21108–21116. https://doi.org/10.1016/j.ceramint.2021.04.114
55. Zhang, J., Huang, D., Liu, S., Dong, X., Li, Y., Zhang, H., Yang, Z., Su, Q., Huang, W., Zheng, W., & Zhou, W. (2019). Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering C, 105(July), 110054. https://doi.org/10.1016/j.msec.2019.110054
56. Preobrazhenskiy, I. I., Tikhonov, A. A., Evdokimov, P. V., Shibaev, A. V., & Putlyaev, V. I. (2021). DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics, 6(April), 100115. https://doi.org/10.1016/j.oceram.2021.100115
57. Foerster, A., Annarasa, V., Terry, A., Wildman, R., Hague, R., Irvine, D., De Focatiis, D. S. A., & Tuck, C. (2021). UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 205, 109681. https://doi.org/10.1016/j.matdes.2021.109681
58. Xing, H., Zou, B., Lai, Q., Huang, C., Chen, Q., Fu, X., & Shi, Z. (2018). Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 338, 153–161. https://doi.org/10.1016/j.powtec.2018.07.023
59. Jones, C. S., Lu, X., Renn, M., Stroder, M., & Shih, W. S. (2010). Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectronic Engineering, 87(3), 434–437. https://doi.org/10.1016/j.mee.2009.05.034
60. Zhao, D., Liu, T., Park, J. G., Zhang, M., Chen, J. M., & Wang, B. (2012). Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes. Microelectronic Engineering, 96, 71–75. https://doi.org/10.1016/j.mee.2012.03.004
61. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
62. Eckstein, R., Hernandez-Sosa, G., Lemmer, U., & Mechau, N. (2014). Aerosol jet printed top grids for organic optoelectronic devices. Organic Electronics, 15(9), 2135–2140. https://doi.org/10.1016/j.orgel.2014.05.031
63. Seifert, T., Baum, M., Roscher, F., Wiemer, M., & Gessner, T. (2015). Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects. Materials Today: Proceedings, 2(8), 4262–4271. https://doi.org/10.1016/j.matpr.2015.09.012
64. Tait, J. G., Witkowska, E., Hirade, M., Ke, T. H., Malinowski, P. E., Steudel, S., Adachi, C., & Heremans, P. (2015). Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Organic Electronics, 22, 40–43. https://doi.org/10.1016/j.orgel.2015.03.034
65. Jabari, E., & Toyserkani, E. (2016). Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters, 174, 40–43. https://doi.org/10.1016/j.matlet.2016.03.082
66. Wang, K., Chang, Y. H., Zhang, C., & Wang, B. (2016). Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon, 98, 397–403. https://doi.org/10.1016/j.carbon.2015.11.032
67. Goh, G. L., Agarwala, S., Tan, Y. J., & Yeong, W. Y. (2018). A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators, B: Chemical, 260, 227–235. https://doi.org/10.1016/j.snb.2017.12.127
68. Laurent, P., Stoukatch, S., Dupont, F., & Kraft, M. (2018). Electrical characterization of Aerosol Jet Printing (AJP) deposited conductive silver tracks on organic materials. Microelectronic Engineering, 197(April), 67–75. https://doi.org/10.1016/j.mee.2018.06.002
69. Khan, S., Nguyen, T. P., Lubej, M., Thiery, L., Vairac, P., & Briand, D. (2018). Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes. Microelectronic Engineering, 194(March), 71–78. https://doi.org/10.1016/j.mee.2018.03.013
70. He, C., Jin, N., Yu, H., Lin, J., & Ma, C. Q. (2019). The electrical sintering and fusing effects of Aerosol-Jet printed silver conductive line. Materials Letters, 246, 5–8. https://doi.org/10.1016/j.matlet.2019.03.016
71. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.101096
72. Chen, Y. D., Nagarajan, V., Rosen, D. W., Yu, W., & Huang, S. Y. (2020). Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes, 58(January), 55–66. https://doi.org/10.1016/j.jmapro.2020.07.064
73. Ćatić, N., Wells, L., Al Nahas, K., Smith, M., Jing, Q., Keyser, U. F., Cama, J., & Kar-Narayan, S. (2020). Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100618
74. Deneault, J. R., Bartsch, C., Cook, A., Grabowski, C., Berrigan, J. D., Glavin, N., & Buskohl, P. R. (2020). Conductivity and radio frequency performance data for silver nanoparticle inks deposited via aerosol jet deposition and processed under varying conditions. Data in Brief, 33, 106331. https://doi.org/10.1016/j.dib.2020.106331
75. Phuah, E. W. C., Hart, W. L., Sumer, H., & Stoddart, P. R. (2020). Patterning of biomaterials by aerosol jet printing: A parametric study. Bioprinting, 18(August 2019), e00081. https://doi.org/10.1016/j.bprint.2020.e00081
76. Zhu, Y., Yu, L., Wu, D., Lv, W., & Wang, L. (2021). A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sensors and Actuators, A: Physical, 318, 112434. https://doi.org/10.1016/j.sna.2020.112434
77. Rahman, M. T., & Panat, R. (2021). Aerosol jet 3D printing and high temperature characterization of nickel nanoparticle films. Manufacturing Letters, 29, 5–10. https://doi.org/10.1016/j.mfglet.2021.04.006
78. Jing, Q., Pace, A., Ives, L., Husmann, A., Ćatić, N., Khanduja, V., Cama, J., & Kar-Narayan, S. (2021). Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science, 2(4). https://doi.org/10.1016/j.xcrp.2021.100386
79. Secor, E. B. (2021). Light scattering measurements to support real-time monitoring and closed-loop control of aerosol jet printing. Additive Manufacturing, 44(April), 102028. https://doi.org/10.1016/j.addma.2021.102028
80. Baù, M., Ferrari, M., Tonoli, E., & Ferrari, V. (2011). Sensors and energy harvesters based on piezoelectric thick films. Procedia Engineering, 25, 737–744. https://doi.org/10.1016/j.proeng.2011.12.182
81. Aminayi P. (2016). Development and evaluation of matrix material formulations for potentıal ıntegratıon ınto ımmunodıagnostıc bıosensorswestern Michigan University, Doctoral thesis.
82. Shancheng Y. (2016), Wavelength tuning of the soft approached whispering gallery mode microlasers for display and sensing, Nanyang Technologıcal Unıversıty, Doctoral thesis.
83. Sobolewski, P., Goszczynska, A., Aleksandrzak, M., Urbas, K., Derkowska, J., Bartoszewska, A., Podolski, J., Mijowska, E., & Fray, M. El. (2017). A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 8(1), 1508–1514. https://doi.org/10.3762/bjnano.8.151
84. Rohit A.(2017). Optimization and characterization of a capillary contact micro-plotter for printed electronic devices, Master of Science,
85. Molazemhosseini, A., Magagnin, L., Vena, P., & Liu, C. C. (2017). Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. Journal of Electroanalytical Chemistry, 789, 50–57. https://doi.org/10.1016/j.jelechem.2017.01.041
86. Wang, Y., Zhao, C., Wang, C., Cerica, D., Baijot, M., Xiao, Q., Stoukatch, S., & Kraft, M. (2018). A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators, A: Physical, 279, 254–262. https://doi.org/10.1016/j.sna.2018.06.028
87. Holeman T. 2018. The systematic approach to microplotter printing of perovskite precursors, Master of Science, Ohio University.
88. Kwon, K. S., Rahman, M. K., Phung, T. H., Hoath, S. D., Jeong, S., & Kim, J. S. (2020). Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 5(4). https://doi.org/10.1088/2058-8585/abc8ca
89. Zymelka, D., Yamashita, T., Sun, X., & Kobayashi, T. (2020). Printed strain sensors based on an intermittent conductive pattern filled with resistive ink droplets. Sensors (Switzerland), 20(15), 1–14. https://doi.org/10.3390/s20154181
90. Li, Q., & Liu, J. (2020). Combined Printing of Highly Aligned Single-Walled Carbon Nanotube Thin Films with Liquid Metal for Direct Fabrication of Functional Electronic Devices. Advanced Electronic Materials, 6(9). https://doi.org/10.1002/aelm.202000537
Algılayıcı ve biyomalzeme üretiminde eklemeli imalat
Yıl 2023,
Cilt: 38 Sayı: 4, 2191 - 2204, 12.04.2023
Gelişen teknolojiyle beraber, Eklemeli imalat tekniği önemi her geçen gün daha farklı alanlarda kullanımı artan imalat alanlarından birisi konumuna gelmiştir. Eklemeli imalat üretilecek olan nesnenin tabaka tabaka üretilmesi/serilmesi prensibine dayanan yöntemdir. Eklemeli imalat yöntemi karmaşık şekilli parçaların üretilebilmesi, maliyet, üretim hızı gibi üstün özellikleri nedeniyle havacılık, otomotiv ve biyomedikal olmak üzere farklı endüstrilerde yaygın olarak kullanılmaktadır. Sahip olduğu bu avantajlar nedeniyle yakın gelecekte çıkarımlı imalat yöntemlerinin yerini alması beklenmektedir. Farklı alanlardaki yaygın kullanımı nedeniyle tarama çalışmalarının incelenmesi başlığın güncel ilerlemesini izleyebilmek adına önem göstermektedir. Bu çalışmada, giyilebilir teknoloji alanında özellikle algılayıcılar ve biyomalzemelerin eklemeli imalat yöntemiyle üretimi üzerine mevcut gelişmelerinin aktarılması amaçlanmıştır.
1. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry. 2010 June 25;: p. 8446-8453.
2. Gamota D, Brazis P, Kalyanasund K, Zhang J. Printed organic and molecular electronics Berlin: Springer; 2004.
3. Karabulut Y., Eklemeli imalat yöntemiyle üretilen farklı cidar kalınlıklarında üretilen inconel 718 alaşım malzemesine uygulanan ikincil işlemlerin malzemenin mekanik özelliklerine etkisinin incelenmesi. Marmara Üniversitesi, fen bilimleri Enstitüsü, 2020.
4. Kantola V, Kulovesi J, Lahti L, Lin R, Zavodchikova M, Coatanea E. Printed electronics, Now and Future. Bit Bang. 2009;: p. 63-105.
5. Gebel M., (2018). Polimer matrisli sürekli fiber takviyeli kompozit parça üretimi için bir eklemeli imalat yönteminin geliştirilmesi. Yüksek lisans tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
6. Özdoğan S., (2021). Eklemeli imalat yöntemleriyle üretilen parçaların baskı parametrelerinin üç-nokta-eğilme davranişlarina etkisinin incelenmesi. Yüksek lisans tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Konya.
7. Song, P., Wang, G., & Zhang, Y. (2021). Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators, A: Physical, 323, 112659. https://doi.org/10.1016/j.sna.2021.112659
12. Zhou, Z., He, Z., Yin, S., Xie, X., & Yuan, W. (2021). Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Composites Part B: Engineering, 220(April), 108984. https://doi.org/10.1016/j.compositesb.2021.108984
13. Shen, X., Zhao, S., & Wan, A. (2021). A sensitive and flexible sensor enhanced by constructing graphene-based polyaniline conductive networks. Sensors and Actuators, A: Physical, 330, 112862. https://doi.org/10.1016/j.sna.2021.112862
14. Zhang, Y., & Cui, Y. (2019). A flexible calligraphy-integrated in situ humidity sensor. Measurement: Journal of the International Measurement Confederation, 147, 106853. https://doi.org/10.1016/j.measurement.2019.106853
15. Annabestani, M., Esmaili-dokht, P., Olianasab, S. A., Orouji, N., & Alipour, Z. (n.d.). A novel fully 3D , microfluidic-oriented , gel-based and low cost stretchable soft sensor. 1–11.
16. Zhang, R., Lv, A., Ying, C., Hu, Z., Hu, H., Chen, H., Liu, Q., Fu, X., Hu, S., & Wong, C. P. (2020). Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 186(October 2019), 1–7. https://doi.org/10.1016/j.compscitech.2019.107933
17. Xiong y., Shen Y. Tian L., Hu Y., Zhu P., Sun. R., Wong C. P.(2020). A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano energy. 70 (October 2020), 104436.
18. Sobolewski P.,, Goszczyńska A.,, Aleksandrzak M., Urbaś K., Derkowska J., Bartoszewska A., Podolski J., Mijowska E. and El Fray M., ‘’ A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite’’
19. Van Driessche, I., Feys, J., Hopkins, S. C., Lommens, P., Granados, X., Glowacki, B. A., Ricart, S., Holzapfel, B., Vilardell, M., Kirchner, A., & Bäcker, M. (2012). Chemical solution deposition using ink-jet printing for YBCO coated conductors. Superconductor Science and Technology, 25(6). https://doi.org/10.1088/0953-2048/25/6/065017
20. Jabari, E., & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321–329. https://doi.org/10.1016/j.carbon.2015.04.094
21. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
22. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.10109
23. Allanurov, A. M., Zdrok, A. Y., Loschilov, A. G., & Malyutin, N. D. (2014). Problem of Ink Evaporation while Using Plotter Systems to Manufacture Printed Electronic Products. Procedia Technology, 18(September), 19–24. https://doi.org/10.1016/j.protcy.2014.11.006
24. Zang, Z., Tang, X., Liu, X., Lei, X., & Chen, W. (2014). Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique. Applied Optics, 53(33), 7868. https://doi.org/10.1364/ao.53.007868
25. Larson, B. J., Gillmor, S. D., & Lagally, M. G. (2004). Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Review of Scientific Instruments, 75(4), 832–836. https://doi.org/10.1063/1.1688436
26. Demiröz Ö. B., (2021). Eklemeli imalat ile yüzeyi güçlendirilen termoelektrik modül yüzeyindeki ısı dağılım etkisinin analizi. Yüksek lisans tezi. İstanbul Gedik Üniversitesi. İstanbul.
27. Aktürk M., (2021). Eklemeli imalat yöntemi ile üretilmiş AlSi10Mg malzemesinin malzeme yapısal parametrelerinin belirlenmesi ve sonlu elemanlar yöntemiyle doğrulanması. Yüksek Lisans Tezi. Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük.
28. Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, 106794. https://doi.org/10.1016/j.jcsr.2021.106794
29. Top N., (2019). Doku mühendisliği için eklemeli imalat kullanılarak yeni bir kemik iskelesi tasarımı ve üretimi. Yüksek lisans tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
30. Claudia, E., Fischer, D., & Nickel, D. (2021). Challenges in electroplating of additive manufactured ABS plastics. 68(June), 1378–1386. https://doi.org/10.1016/j.jmapro.2021.06.037
31. Tsushima, N., Tamayama, M., Arizono, H., & Makihara, K. (2021). Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing. Aerospace Science and Technology, 117, 106923. https://doi.org/10.1016/j.ast.2021.106923
32. ATALAY Y., (2020). Hybrid additive manufacturing by shaped metal deposition. Yüksek lisans tezi. Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
33. Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). Materials Today : Proceedings The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.596
34. Bhatia, A., & Sehgal, A. K. (2021). Materials Today : Proceedings Additive manufacturing materials , methods and applications : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.379
35. Hashmi, A. W., & Meena, A. (2021). Materials Today : Proceedings Improving the surface characteristics of additively manufactured parts : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.223
36. Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346.
37. Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583.
38. Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726.
39. Postiglione G. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15.
40. Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
41. Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(February), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
42. Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
43. Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
44. Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
45. Putra, N. E., Leeflang, M. A., Taheri, P., Fratila-Apachitei, L. E., Mol, J. M. C., Zhou, J., & Zadpoor, A. A. (2021). Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 134(xxxx), 774–790. https://doi.org/10.1016/j.actbio.2021.07.042
46. Lin, Z., Jiang, T., Kinsella, J. M., Shang, J., & Luo, Z. (2021). Assessing roughness of extrusion printed soft materials using a semi-quantitative method. Materials Letters, 303(July), 130480. https://doi.org/10.1016/j.matlet.2021.130480
47. Diba, M., Koons, G. L., Bedell, M. L., & Mikos, A. G. (2021). 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 274(April), 120871. https://doi.org/10.1016/j.biomaterials.2021.120871
48. Kim, M. H., & Nam, S. Y. (2020). Assessment of coaxial printability for extrusion-based bioprinting of alginate-based tubular constructs. Bioprinting, 20(July), e00092. https://doi.org/10.1016/j.bprint.2020.e00092
49. ong, K., Zhang, D., Yin, J., & Huang, Y. (2021). Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 41(January), 101963. https://doi.org/10.1016/j.addma.2021.101963
50. Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M., & Petrov, P. D. (2021). Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydrate Polymers, 260(January), 117793. https://doi.org/10.1016/j.carbpol.2021.117793
51. Sakai, S., Yoshii, A., Sakurai, S., Horii, K., & Nagasuna, O. (2020). Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 8(July). https://doi.org/10.1016/j.mtbio.2020.100078
52. Ginestra, P. S., Rovetta, R., Fiorentino, A., & Ceretti, E. (2020). Bioprinting process optimization: Evaluation of parameters influence on the extrusion of inorganic polymers. Procedia CIRP, 89, 104–109. https://doi.org/10.1016/j.procir.2020.05.125
53. Kim, M. H., Lee, Y. W., Jung, W. K., Oh, J., & Nam, S. Y. (2019). Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 98(February), 187–194. https://doi.org/10.1016/j.jmbbm.2019.06.014
54. Liu, S., Mo, L., Bi, G., Chen, S., Yan, D., Yang, J., Jia, Y. G., & Ren, L. (2021). DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceramics International, 47(15), 21108–21116. https://doi.org/10.1016/j.ceramint.2021.04.114
55. Zhang, J., Huang, D., Liu, S., Dong, X., Li, Y., Zhang, H., Yang, Z., Su, Q., Huang, W., Zheng, W., & Zhou, W. (2019). Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering C, 105(July), 110054. https://doi.org/10.1016/j.msec.2019.110054
56. Preobrazhenskiy, I. I., Tikhonov, A. A., Evdokimov, P. V., Shibaev, A. V., & Putlyaev, V. I. (2021). DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics, 6(April), 100115. https://doi.org/10.1016/j.oceram.2021.100115
57. Foerster, A., Annarasa, V., Terry, A., Wildman, R., Hague, R., Irvine, D., De Focatiis, D. S. A., & Tuck, C. (2021). UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 205, 109681. https://doi.org/10.1016/j.matdes.2021.109681
58. Xing, H., Zou, B., Lai, Q., Huang, C., Chen, Q., Fu, X., & Shi, Z. (2018). Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 338, 153–161. https://doi.org/10.1016/j.powtec.2018.07.023
59. Jones, C. S., Lu, X., Renn, M., Stroder, M., & Shih, W. S. (2010). Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectronic Engineering, 87(3), 434–437. https://doi.org/10.1016/j.mee.2009.05.034
60. Zhao, D., Liu, T., Park, J. G., Zhang, M., Chen, J. M., & Wang, B. (2012). Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes. Microelectronic Engineering, 96, 71–75. https://doi.org/10.1016/j.mee.2012.03.004
61. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
62. Eckstein, R., Hernandez-Sosa, G., Lemmer, U., & Mechau, N. (2014). Aerosol jet printed top grids for organic optoelectronic devices. Organic Electronics, 15(9), 2135–2140. https://doi.org/10.1016/j.orgel.2014.05.031
63. Seifert, T., Baum, M., Roscher, F., Wiemer, M., & Gessner, T. (2015). Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects. Materials Today: Proceedings, 2(8), 4262–4271. https://doi.org/10.1016/j.matpr.2015.09.012
64. Tait, J. G., Witkowska, E., Hirade, M., Ke, T. H., Malinowski, P. E., Steudel, S., Adachi, C., & Heremans, P. (2015). Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Organic Electronics, 22, 40–43. https://doi.org/10.1016/j.orgel.2015.03.034
65. Jabari, E., & Toyserkani, E. (2016). Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters, 174, 40–43. https://doi.org/10.1016/j.matlet.2016.03.082
66. Wang, K., Chang, Y. H., Zhang, C., & Wang, B. (2016). Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon, 98, 397–403. https://doi.org/10.1016/j.carbon.2015.11.032
67. Goh, G. L., Agarwala, S., Tan, Y. J., & Yeong, W. Y. (2018). A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators, B: Chemical, 260, 227–235. https://doi.org/10.1016/j.snb.2017.12.127
68. Laurent, P., Stoukatch, S., Dupont, F., & Kraft, M. (2018). Electrical characterization of Aerosol Jet Printing (AJP) deposited conductive silver tracks on organic materials. Microelectronic Engineering, 197(April), 67–75. https://doi.org/10.1016/j.mee.2018.06.002
69. Khan, S., Nguyen, T. P., Lubej, M., Thiery, L., Vairac, P., & Briand, D. (2018). Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes. Microelectronic Engineering, 194(March), 71–78. https://doi.org/10.1016/j.mee.2018.03.013
70. He, C., Jin, N., Yu, H., Lin, J., & Ma, C. Q. (2019). The electrical sintering and fusing effects of Aerosol-Jet printed silver conductive line. Materials Letters, 246, 5–8. https://doi.org/10.1016/j.matlet.2019.03.016
71. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.101096
72. Chen, Y. D., Nagarajan, V., Rosen, D. W., Yu, W., & Huang, S. Y. (2020). Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes, 58(January), 55–66. https://doi.org/10.1016/j.jmapro.2020.07.064
73. Ćatić, N., Wells, L., Al Nahas, K., Smith, M., Jing, Q., Keyser, U. F., Cama, J., & Kar-Narayan, S. (2020). Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100618
74. Deneault, J. R., Bartsch, C., Cook, A., Grabowski, C., Berrigan, J. D., Glavin, N., & Buskohl, P. R. (2020). Conductivity and radio frequency performance data for silver nanoparticle inks deposited via aerosol jet deposition and processed under varying conditions. Data in Brief, 33, 106331. https://doi.org/10.1016/j.dib.2020.106331
75. Phuah, E. W. C., Hart, W. L., Sumer, H., & Stoddart, P. R. (2020). Patterning of biomaterials by aerosol jet printing: A parametric study. Bioprinting, 18(August 2019), e00081. https://doi.org/10.1016/j.bprint.2020.e00081
76. Zhu, Y., Yu, L., Wu, D., Lv, W., & Wang, L. (2021). A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sensors and Actuators, A: Physical, 318, 112434. https://doi.org/10.1016/j.sna.2020.112434
77. Rahman, M. T., & Panat, R. (2021). Aerosol jet 3D printing and high temperature characterization of nickel nanoparticle films. Manufacturing Letters, 29, 5–10. https://doi.org/10.1016/j.mfglet.2021.04.006
78. Jing, Q., Pace, A., Ives, L., Husmann, A., Ćatić, N., Khanduja, V., Cama, J., & Kar-Narayan, S. (2021). Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science, 2(4). https://doi.org/10.1016/j.xcrp.2021.100386
79. Secor, E. B. (2021). Light scattering measurements to support real-time monitoring and closed-loop control of aerosol jet printing. Additive Manufacturing, 44(April), 102028. https://doi.org/10.1016/j.addma.2021.102028
80. Baù, M., Ferrari, M., Tonoli, E., & Ferrari, V. (2011). Sensors and energy harvesters based on piezoelectric thick films. Procedia Engineering, 25, 737–744. https://doi.org/10.1016/j.proeng.2011.12.182
81. Aminayi P. (2016). Development and evaluation of matrix material formulations for potentıal ıntegratıon ınto ımmunodıagnostıc bıosensorswestern Michigan University, Doctoral thesis.
82. Shancheng Y. (2016), Wavelength tuning of the soft approached whispering gallery mode microlasers for display and sensing, Nanyang Technologıcal Unıversıty, Doctoral thesis.
83. Sobolewski, P., Goszczynska, A., Aleksandrzak, M., Urbas, K., Derkowska, J., Bartoszewska, A., Podolski, J., Mijowska, E., & Fray, M. El. (2017). A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 8(1), 1508–1514. https://doi.org/10.3762/bjnano.8.151
84. Rohit A.(2017). Optimization and characterization of a capillary contact micro-plotter for printed electronic devices, Master of Science,
85. Molazemhosseini, A., Magagnin, L., Vena, P., & Liu, C. C. (2017). Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. Journal of Electroanalytical Chemistry, 789, 50–57. https://doi.org/10.1016/j.jelechem.2017.01.041
86. Wang, Y., Zhao, C., Wang, C., Cerica, D., Baijot, M., Xiao, Q., Stoukatch, S., & Kraft, M. (2018). A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators, A: Physical, 279, 254–262. https://doi.org/10.1016/j.sna.2018.06.028
87. Holeman T. 2018. The systematic approach to microplotter printing of perovskite precursors, Master of Science, Ohio University.
88. Kwon, K. S., Rahman, M. K., Phung, T. H., Hoath, S. D., Jeong, S., & Kim, J. S. (2020). Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 5(4). https://doi.org/10.1088/2058-8585/abc8ca
89. Zymelka, D., Yamashita, T., Sun, X., & Kobayashi, T. (2020). Printed strain sensors based on an intermittent conductive pattern filled with resistive ink droplets. Sensors (Switzerland), 20(15), 1–14. https://doi.org/10.3390/s20154181
90. Li, Q., & Liu, J. (2020). Combined Printing of Highly Aligned Single-Walled Carbon Nanotube Thin Films with Liquid Metal for Direct Fabrication of Functional Electronic Devices. Advanced Electronic Materials, 6(9). https://doi.org/10.1002/aelm.202000537
Kartal, Y., & Daş, M. T. (2023). Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2191-2204. https://doi.org/10.17341/gazimmfd.1075312
AMA
Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. Nisan 2023;38(4):2191-2204. doi:10.17341/gazimmfd.1075312
Chicago
Kartal, Yunus, ve Memik Taylan Daş. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 4 (Nisan 2023): 2191-2204. https://doi.org/10.17341/gazimmfd.1075312.
EndNote
Kartal Y, Daş MT (01 Nisan 2023) Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2191–2204.
IEEE
Y. Kartal ve M. T. Daş, “Algılayıcı ve biyomalzeme üretiminde eklemeli imalat”, GUMMFD, c. 38, sy. 4, ss. 2191–2204, 2023, doi: 10.17341/gazimmfd.1075312.
ISNAD
Kartal, Yunus - Daş, Memik Taylan. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (Nisan 2023), 2191-2204. https://doi.org/10.17341/gazimmfd.1075312.
JAMA
Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. 2023;38:2191–2204.
MLA
Kartal, Yunus ve Memik Taylan Daş. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 4, 2023, ss. 2191-04, doi:10.17341/gazimmfd.1075312.
Vancouver
Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. 2023;38(4):2191-204.