Manyetik kuvvet ile taşıt süspansiyon kontrolü
Yıl 2024,
Cilt: 39 Sayı: 1, 649 - 664, 21.08.2023
Ergin Kılıç
,
Berkan Kuşcu
Öz
Bu çalışmada zeminden gelen istenmeyen etkileri (yolculara iletilen titreşimi) ortadan kaldırmaya yönelik bir manyetik süspansiyon sisteminin tasarımı ve kontrolü amaçlandı. Tasarlanan manyetik süspansiyon sisteminde klasik süspansiyon sistemlerinden farklı olarak yay yerine mıknatıs kullanıldı. Mıknatısların manyetik kuvvetleri kullanılarak (itme ve çekme) titreşim kontrolü daha hassas bir şekilde gerçekleştirildi. Yürütülen bu çalışmanın özgünlüğü, zeminden gelebilecek her türlü farklı bozucu etkilere karşı manyetik alan etkisi altında doğal pasif mıknatıslarla çalışan bir süspansiyon tasarımını içermesidir. Bu sistemde kontrolcü bulunduğu konumu denge noktası kabul eder ve bu sayede zeminden gelen bozucu kuvvetlere rağmen döner mıknatısların açısını değiştirerek denge konumunda kalmaya çalışır. Böylece yolculara iletilen ivme değerleri geliştirilen manyetik titreşim kontrol sistemi sayesinde azaltılmıştır.
Kaynakça
- 1. Rao S.S., Mechanical Vibrations, Fifth Edition, Pearson Education, New York, A.B.D., 2011.
- 2. Sever M., Şendur H.S., Yazıcı H., Arslan M.S., Active vibration control of a vehicle suspension system having biodynamic driver model with state derivative feedback LQR, Journal of theFaculty of Engineeringand Architecture of Gazi University, 34 (3), 1574-1583, 2019.
- 3. Eroğlu M., Koç M.A., Kozan R., Esen İ., Active control of quarter-car and bridge vibrations using the sliding mode control, Journal of theFaculty of Engineeringand Architecture of Gazi University, 37 (4), 1957-1970, 2022.
- 4. Youness S., Lobusov E., Networked control for active suspension system, Procedia Computer Science, 150, 123-130, 2019.
- 5. Bednarek M., Lewandowski D., Polczyński K., Awrejcewicz J., On the active damping of vibrations using electromagnetic spring, Mechanics Based Design of Structures and Machines, 1-14, 2020.
- 6. Öztürk S., Kizir S., Bingül Z., Oysu C., Manyetik Süspansiyon Sisteminin Gerçeklenmesi ve Kontrolü, Otomatik Kontrol Ulusal Toplantisi, İstanbul-Türkiye, 95-100, 5-7 Eylül, 2007.
- 7. Sun N., Fang Y., Chen H., Tracking control for magnetic-suspension system with online unknown mass identification, Control Engineering Practice, 58, 242-253, 2017.
- 8. Liu C., Fu D., Wang T., H_∞ control for magnetic-suspension system of gantry-moving type numerically controlled machine tool crossbeam. International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin-China, vol.1, 21-23, 12-14 August, 2011.
- 9. Golob M., Tovornik B., Modeling and control of the magnetic suspension system, ISA Transactions, 42, 89-100, 2003.
- 10. JesúsRubio J., Zhang L., Lughofer E., Cruz P., Alsaedi A., Hayat T., Modeling and control with neural networks for a magnetic levitation system, Neurocomputing, 227, 113-121, 2017.
- 11. Robertson W.S., Kidner M., Cazzolato B.S., Zander A.C., Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation, Journal of Sound and Vibration, 326, 88-103, 2009.
- 12. Yang B., Hu Y., Fang H., Song C., Research on arrangement scheme of magnetic suspension isolator for multi-degree freedom vibration isolation system, Journal of Industrial Information Integration, 6, 47-55, 2017.
- 13. Mizuno T., Takasaki M., Kishita D., Hirakawa K., Vibration isolation system combining zero-power magnetic suspension with springs, Control Engineering Practice, 15, 187-196, 2007.
- 14. Carrella A., Brennan M.J., Waters T.P., Shin K., On the design of a high-static low-dynamic stiffness isolator using linear mechanical springs and magnets, Journal of Sound and Vibration, 315, 712-720, 2008.
- 15. Xu D., Yu Q., Zhou J., Bishop S.R., Theoretical and experimantal analyses of a nonlinear magnetic for vibration isolator with quasi-zero stiffness characteristic, Journal of Sound and Vibration, 332, 3377-3389, 2013.
- 16. Akoun G., Yonnet J.P., 3D analytical calculation of the forces exerted between two cuboidal magnets, IEEE Transactions on Magnetics, 20 (5), 1962-1964, 1984.
- 17. Yonnet, J.P., Allag H., Three-dimensional analytical calculation of permanent magnet interactions by magnetic node representation, IEEE Transactions on Magnetics, 47 (8), 2050-2055, 2011.
- 18. Allag H., Yonnet J.P., Bouchekara H.R., Latreche M.E., Rubeck C., Coulombian Model for 3D Analytical Calculation of the Torque Exerted on Cuboidal Permanent Magnets with Arbitrary Oriented Polarizations, Applied Computational Electromagnetics Society Journal, 30 (4), 351-356, 2015.
- 19. Pavelka P., Huňady R., Kučinský M., Modal analysis using the signal processing toolbox of Matlab 2017, American Journal of Mechanical Engineering, 5 (6), 312-315, 2017.