Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi

Yıl 2024, Cilt: 39 Sayı: 2, 869 - 882, 30.11.2023
https://doi.org/10.17341/gazimmfd.1201401

Öz

Bu çalışmada, optimum yalıtım kalınlığının (OYK) entransy tabanlı çevre ve yaşam döngüsü maliyeti (YDM) analizi ile belirlenmesinde yakıt türünün etkisi araştırılmıştır. Analizler İstanbul için ısıtma dönemindeki enerji gereksinimi dikkate alınarak yapılmıştır. İncelenen yakıt türü olarak hidrojen, metanol, etanol, doğalgaz, dizel yakıt ve linyit, yalıtım malzemesi olarak ise camyünü seçilmiştir. Çevresel ve ekonomik OYK, toplam çevresel etki ve net çevresel kazanç, entransy kaybı ve net entransy tasarrufu, yakıt tüketimi, CO2 emisyonları, yakıt maliyetleri, yalıtım maliyetleri, toplam maliyetler ve entransy maliyetlerinde net tasarruflar değerlendirilmiştir. Camyünü için çevresel ve ekonomik OYK’ları sırasıyla: i) hidrojen kullanıldığında 0,297 m ve 0,0855m; ii) methanol kullanıldığında 0,211 m ve 0,0044m; iii) etanol kullanıldığında 0,226 m ve 0,0419m; iv) doğalgaz kullanıldığında 0,126 m ve 0,0026 m; v) dizel yakıt kullanıldığında 0,185 m ve 0.0287 m; vi) linyit kullanıldığında 2,022 m ve 0,0230 m olarak tespit edilmiştir. Bu optimum kalınlıklarda toplam çevresel etki, net çevresel kazanç, entransy kaybı ve net entransy tasarrufu değerleri, sırasıyla: i) hidrojen kullanıldığında 57,59 mPts/m2 , 521,82 mPts/m2 , 5,43 $/m2 ve 13,32 $/m2; ii) methanol kullanıldığında 43,35 mPts/m2, 289,89 mPts/m2, 0,72 $/m2 ve 0,035 $/m2; iii) ethanol kullanıldığında 44,15 mPts/m2, 301,71 mPts/m2, 2,89 $/m2 ve 3,19 $/m2; iv) doğalgaz kullanıldığında 25,34 mPts/m2 , 94,24 mPts/m2, 0,61 $/m2 ve 0.012 $/m2; v) dizel yakıt kullanıldığında 36,5 mPts/m2, 203,15 mPts/m2, 2,13 $/m2 ve 1,5 $/m2; vi) linyit kullanıldığında 383,73 mPts/m2, 24237,45 mPts/m2 ,1,80 $/m2 ve 0,96 $/m2 olarak hesaplanmıştır. Gelecekteki bir pazarlama politikası için hem daha ucuz hem de daha az çevresel etkiye sahip yakıtlara erişim sağlama çabalarını teşvik etmek stratejik olarak çok önemlidir. Bu bağlamda hidrojen, metanol ve doğalgaz öne çıkmaktadır. Hidrojenin karbon içermeyen saf bir yakıt olmasına rağmen çevresel etki değeri ve maliyeti kullanılan hidrojen üretim yöntemleri nedeniyle oldukça yüksektir. Bu nedenle yeşil hidrojen üretiminin artırılması ve maliyetinin düşürülmesi gerekmektedir.

Kaynakça

  • Akhmat G., Zaman K., Shukui T., Sajjad F., Does energy consumption contribute to climate change? Evidence from major regions of the world, Renewable Sustainable Energy Rev., 36, 123–134, 2014.
  • Yücer C.T., Hepbasli A., Thermodynamic analysis of a building using exergy analysis method, Energy Build., 43, 536–542, 2011.
  • Özel G., Açıkkalp E., Görgün B., Yamık H., Caner N., Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach, Sustainable Energy Technol. Assess., 11, 87–91, 2015.
  • Kürekçi N.A., Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers, Energy Build., 118, 197–213, 2016.
  • Hasan A., Optimizing insulation thickness for buildings using life cycle cost, Appl. Energy, 63, 115–124, 1999.
  • Çomaklı K., Yüksel B., Optimum insulation thickness of external walls for energy saving, Appl. Therm. Eng., 23, 473–479, 2003.
  • Alsayed M.F., Tayeh R., Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings, J. Build. Eng., 22, 101–112, 2019.
  • Aydin N., Biyikoglu A., Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey, Sci. Technol. Built Environ., 27 (1), 101–112, 2021.
  • Bolattürk A., Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey, Appl. Therm. Eng., 26, 1301–1309, 2006.
  • Dombaycı Ö.A., Gölcü M., Pancar Y., Optimization of insulation thickness for external walls using different energy-sources, Appl. Energy, 83, 921–928, 2006.
  • Kaynakli O., A study on residential heating energy requirement and optimum insulation thickness, Renewable Energy, 33, 1164–1172, 2008.
  • Ucar A., Balo F., Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey, Appl. Energy, 86, 730–736, 2009.
  • Arslan O., Özgür M.A., Yildizay H.D., Yamık H., Köse R., Fuel effects on optimum insulation thickness: Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 32 (2), 128-147, 2009.
  • Guo Z.Y., Entransy—A physical quantity describing heat transfer ability, Int. J. Heat Mass Transf., 50, 2545–2556, 2007.
  • Feng H., Chen L., Xie Z., Sun F., Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle, Sci China Technol Sci, 55 (12), 3322–3333, 2012.
  • Feng H., Chen L., Sun F., “Volume-point” heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale, Sci China Technol Sci, 55 (3), 779–794, 2012.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall, Int. Commun. Heat Mass Transfer, 52, 26–32, 2014.
  • Feng H., Chen L., Xie Z., Ding Z., Sun F., Generalized constructal optimization for the secondary cooling process of slab continuous casting based on entransy theory, Sci China Technol Sci, 57 (4), 784–795, 2014.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales, Int. J. Heat Mass Transfer, 84, 848–855, 2015.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for “volume-point” heat conduction at micro and nanoscales, J. Energy Inst., 88, 188–197, 2015.
  • Feng H., Chen L., Xie Z., Sun F., Constructal designs for insulation layers of steel rolling reheating furnace wall with convective and radiative boundary conditions, Appl. Therm. Eng.,100, 925–931, 2016.
  • Chen L., Progress in entransy theory and its applications, Sci China Technol Sci, 57 (34), 4404–4426, 2012.
  • Chen L., Progress in study on constructal theory and its applications, Sci China Technol Sci, 55 (3), 802–820, 2012.
  • Chen L., Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle, Sci China Technol Sci, 57 (12), 2305–2327, 2014.
  • Cheng X., Chen Q., Hu G., Liang X., Entransy balance for the closed system undergoing thermodynamic processes, Int. J. Heat Mass Transfer, 60, 180–187, 2013.
  • Goedkoop M.J., Spriensma R., The Eco-indicator 99: a damage oriented method for life cycle impact assessment. Methodology report, Amersfoort, Netherlands. https://pre-sustainability.com/files/2013/10/EI95FinalReport.pdf , 2001, Erişim tarihi: 1 Mart 2022.
  • Gülten A., Determination of optimum insulation thickness using the entransy based thermoeconomic and environmental analysis: a case study for Turkey, Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42 (2), 219–232, 2020.
  • The Eco-indicator 99: a damage oriented method for life cycle impact assessment, Manual for designers, https://pre-sustainability.com/legacy/download/EI99_Manual.pdf , 2000, Erişim tarihi: 1 Mart 2022.
  • Amelio A., Genduso G., Vreysen S., Luis P., Van der Bruggen B., Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives, Green Chem., 16, 3045–3063, 2014.
  • Lelek L., Kulczycka J., Life cycle assessment of opencast lignite mining, Int J Coal Sci Technol, 8 (6), 1272–1287, 2021.
  • Yılmaz T., Bulut H., Türkiye için yeni dış ortam sıcaklık tasarım değerleri, V. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir-Türkiye, 293–311, 3-6 Ekim, 2001.
  • Hydrogen A decarbonisation route for heat in buildings?, LETI, London, Feb 1-12, 2021. https://www.leti.london/_files/ugd/252d09_54035c0c27684afca52c7634709b86ec.pdf., Erişim tarihi: 1 Mart 2022.
  • Methanol New Energy Applications in China: Boilers and Cook Stoves, Center for Global New Energy Strategy Studies of Peking University and Methanol Institute, pp. 1-39. https://www.methanol.org/wp-content/uploads/2018/04/IB-CS-Report-MI-20180402.pdf , Erişim tarihi: 1 Mart 2022.
  • Qing L., Jiang J., Qi J., Deng J., Yang D., Wu J., Duan L., Hao J., Improving the energy efficiency of stoves to reduce pollutant emissions from household solid fuel combustion in China, Environ. Sci. Technol. Lett., (3), 369−374, 2016.
  • Engineering Toolbox, Fuels - Higher and Lower Calorific Values, https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html , Erişim tarihi: 1 Mart 2022.
  • Lignite lower calorific value, https://world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx , Erişim tarihi: 1 Mart 2022.
  • Hydrogen market price, https://www.hydrogen.energy.gov/pdfs/20004-cost-electrolytic-hydrogen-production.pdf, Erişim tarihi: 1 Mart 2022.
  • Methanol market price, https://turkish.alibaba.com/g/methanol-prices.html , Erişim tarihi: 1 Mart 2022.
  • Ethanol market price, https://www.globalpetrolprices.com/USA/ethanol_prices/ , Erişim tarihi: 1 Mart 2022.
  • Natural gas market price, https://www.igdas.istanbul/perakende-satis , Erişim tarihi: 1 Mart 2022.
  • Diesel fuel market price, https://www.opet.com.tr/akaryakit-fiyatlari/istanbul-avrupa , Erişim tarihi: 1 Mart 2022.
  • Lignite market price, https://www.akakce.com/arama/?q=linyit , Erişim tarihi: 1 Mart 2022.
  • Glasswool market price, https://www.cimri.com/dis-cephe-yalitim-malzemeleri , Erişim tarihi: 1 Mart 2022.
  • Turkiye interest rate, https://tradingeconomics.com/turkey/interest-rate , Erişim tarihi: 1 Mart 2022.
  • Turkiye inflation rate, https://data.tuik.gov.tr/Bulten/Index?p=Tuketici-Fiyat-Endeksi-Subat-2022-45791 , Erişim tarihi: 1 Mart 2022.
  • Cüce E., Cüce P.M., Wood C.J., Riffat S.B., Optimizing insulation thickness and analyzing environmental impacts of aerogel-based thermal superinsulation in buildings, Energy Build., 77, 28-39, 2014.
  • The stoichiometric combustion reaction for one mole hydrocarbon fuel, https://en.wikipedia.org/wiki/Combustion , Erişim tarihi: 1 Mart 2022.
  • Diesel chemical formula, https://sites.google.com/site/qfa201213fuels/introduction/3-5-enthapy-of-combustion-of-gasoline-and-diesel , Erişim tarihi: 1 Mart 2022.
  • Bhoi S., Banerjee T., Mohanty K., Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation, RSC Adv., (6), 2559−2570, 2016
Yıl 2024, Cilt: 39 Sayı: 2, 869 - 882, 30.11.2023
https://doi.org/10.17341/gazimmfd.1201401

Öz

Kaynakça

  • Akhmat G., Zaman K., Shukui T., Sajjad F., Does energy consumption contribute to climate change? Evidence from major regions of the world, Renewable Sustainable Energy Rev., 36, 123–134, 2014.
  • Yücer C.T., Hepbasli A., Thermodynamic analysis of a building using exergy analysis method, Energy Build., 43, 536–542, 2011.
  • Özel G., Açıkkalp E., Görgün B., Yamık H., Caner N., Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach, Sustainable Energy Technol. Assess., 11, 87–91, 2015.
  • Kürekçi N.A., Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers, Energy Build., 118, 197–213, 2016.
  • Hasan A., Optimizing insulation thickness for buildings using life cycle cost, Appl. Energy, 63, 115–124, 1999.
  • Çomaklı K., Yüksel B., Optimum insulation thickness of external walls for energy saving, Appl. Therm. Eng., 23, 473–479, 2003.
  • Alsayed M.F., Tayeh R., Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings, J. Build. Eng., 22, 101–112, 2019.
  • Aydin N., Biyikoglu A., Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey, Sci. Technol. Built Environ., 27 (1), 101–112, 2021.
  • Bolattürk A., Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey, Appl. Therm. Eng., 26, 1301–1309, 2006.
  • Dombaycı Ö.A., Gölcü M., Pancar Y., Optimization of insulation thickness for external walls using different energy-sources, Appl. Energy, 83, 921–928, 2006.
  • Kaynakli O., A study on residential heating energy requirement and optimum insulation thickness, Renewable Energy, 33, 1164–1172, 2008.
  • Ucar A., Balo F., Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey, Appl. Energy, 86, 730–736, 2009.
  • Arslan O., Özgür M.A., Yildizay H.D., Yamık H., Köse R., Fuel effects on optimum insulation thickness: Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 32 (2), 128-147, 2009.
  • Guo Z.Y., Entransy—A physical quantity describing heat transfer ability, Int. J. Heat Mass Transf., 50, 2545–2556, 2007.
  • Feng H., Chen L., Xie Z., Sun F., Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle, Sci China Technol Sci, 55 (12), 3322–3333, 2012.
  • Feng H., Chen L., Sun F., “Volume-point” heat conduction constructal optimization based on entransy dissipation rate minimization with three-dimensional cylindrical element and rectangular and triangular elements on microscale and nanoscale, Sci China Technol Sci, 55 (3), 779–794, 2012.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall, Int. Commun. Heat Mass Transfer, 52, 26–32, 2014.
  • Feng H., Chen L., Xie Z., Ding Z., Sun F., Generalized constructal optimization for the secondary cooling process of slab continuous casting based on entransy theory, Sci China Technol Sci, 57 (4), 784–795, 2014.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales, Int. J. Heat Mass Transfer, 84, 848–855, 2015.
  • Feng H., Chen L., Xie Z., Sun F., Constructal entransy dissipation rate minimization for “volume-point” heat conduction at micro and nanoscales, J. Energy Inst., 88, 188–197, 2015.
  • Feng H., Chen L., Xie Z., Sun F., Constructal designs for insulation layers of steel rolling reheating furnace wall with convective and radiative boundary conditions, Appl. Therm. Eng.,100, 925–931, 2016.
  • Chen L., Progress in entransy theory and its applications, Sci China Technol Sci, 57 (34), 4404–4426, 2012.
  • Chen L., Progress in study on constructal theory and its applications, Sci China Technol Sci, 55 (3), 802–820, 2012.
  • Chen L., Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle, Sci China Technol Sci, 57 (12), 2305–2327, 2014.
  • Cheng X., Chen Q., Hu G., Liang X., Entransy balance for the closed system undergoing thermodynamic processes, Int. J. Heat Mass Transfer, 60, 180–187, 2013.
  • Goedkoop M.J., Spriensma R., The Eco-indicator 99: a damage oriented method for life cycle impact assessment. Methodology report, Amersfoort, Netherlands. https://pre-sustainability.com/files/2013/10/EI95FinalReport.pdf , 2001, Erişim tarihi: 1 Mart 2022.
  • Gülten A., Determination of optimum insulation thickness using the entransy based thermoeconomic and environmental analysis: a case study for Turkey, Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42 (2), 219–232, 2020.
  • The Eco-indicator 99: a damage oriented method for life cycle impact assessment, Manual for designers, https://pre-sustainability.com/legacy/download/EI99_Manual.pdf , 2000, Erişim tarihi: 1 Mart 2022.
  • Amelio A., Genduso G., Vreysen S., Luis P., Van der Bruggen B., Guidelines based on life cycle assessment for solvent selection during the process design and evaluation of treatment alternatives, Green Chem., 16, 3045–3063, 2014.
  • Lelek L., Kulczycka J., Life cycle assessment of opencast lignite mining, Int J Coal Sci Technol, 8 (6), 1272–1287, 2021.
  • Yılmaz T., Bulut H., Türkiye için yeni dış ortam sıcaklık tasarım değerleri, V. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir-Türkiye, 293–311, 3-6 Ekim, 2001.
  • Hydrogen A decarbonisation route for heat in buildings?, LETI, London, Feb 1-12, 2021. https://www.leti.london/_files/ugd/252d09_54035c0c27684afca52c7634709b86ec.pdf., Erişim tarihi: 1 Mart 2022.
  • Methanol New Energy Applications in China: Boilers and Cook Stoves, Center for Global New Energy Strategy Studies of Peking University and Methanol Institute, pp. 1-39. https://www.methanol.org/wp-content/uploads/2018/04/IB-CS-Report-MI-20180402.pdf , Erişim tarihi: 1 Mart 2022.
  • Qing L., Jiang J., Qi J., Deng J., Yang D., Wu J., Duan L., Hao J., Improving the energy efficiency of stoves to reduce pollutant emissions from household solid fuel combustion in China, Environ. Sci. Technol. Lett., (3), 369−374, 2016.
  • Engineering Toolbox, Fuels - Higher and Lower Calorific Values, https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html , Erişim tarihi: 1 Mart 2022.
  • Lignite lower calorific value, https://world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx , Erişim tarihi: 1 Mart 2022.
  • Hydrogen market price, https://www.hydrogen.energy.gov/pdfs/20004-cost-electrolytic-hydrogen-production.pdf, Erişim tarihi: 1 Mart 2022.
  • Methanol market price, https://turkish.alibaba.com/g/methanol-prices.html , Erişim tarihi: 1 Mart 2022.
  • Ethanol market price, https://www.globalpetrolprices.com/USA/ethanol_prices/ , Erişim tarihi: 1 Mart 2022.
  • Natural gas market price, https://www.igdas.istanbul/perakende-satis , Erişim tarihi: 1 Mart 2022.
  • Diesel fuel market price, https://www.opet.com.tr/akaryakit-fiyatlari/istanbul-avrupa , Erişim tarihi: 1 Mart 2022.
  • Lignite market price, https://www.akakce.com/arama/?q=linyit , Erişim tarihi: 1 Mart 2022.
  • Glasswool market price, https://www.cimri.com/dis-cephe-yalitim-malzemeleri , Erişim tarihi: 1 Mart 2022.
  • Turkiye interest rate, https://tradingeconomics.com/turkey/interest-rate , Erişim tarihi: 1 Mart 2022.
  • Turkiye inflation rate, https://data.tuik.gov.tr/Bulten/Index?p=Tuketici-Fiyat-Endeksi-Subat-2022-45791 , Erişim tarihi: 1 Mart 2022.
  • Cüce E., Cüce P.M., Wood C.J., Riffat S.B., Optimizing insulation thickness and analyzing environmental impacts of aerogel-based thermal superinsulation in buildings, Energy Build., 77, 28-39, 2014.
  • The stoichiometric combustion reaction for one mole hydrocarbon fuel, https://en.wikipedia.org/wiki/Combustion , Erişim tarihi: 1 Mart 2022.
  • Diesel chemical formula, https://sites.google.com/site/qfa201213fuels/introduction/3-5-enthapy-of-combustion-of-gasoline-and-diesel , Erişim tarihi: 1 Mart 2022.
  • Bhoi S., Banerjee T., Mohanty K., Insights on the combustion and pyrolysis behavior of three different ranks of coals using reactive molecular dynamics simulation, RSC Adv., (6), 2559−2570, 2016
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Uğur Akbulut 0000-0002-9317-3298

Erken Görünüm Tarihi 18 Ekim 2023
Yayımlanma Tarihi 30 Kasım 2023
Gönderilme Tarihi 9 Kasım 2022
Kabul Tarihi 25 Nisan 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 2

Kaynak Göster

APA Akbulut, U. (2023). Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 869-882. https://doi.org/10.17341/gazimmfd.1201401
AMA Akbulut U. Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi. GUMMFD. Kasım 2023;39(2):869-882. doi:10.17341/gazimmfd.1201401
Chicago Akbulut, Uğur. “Optimum yalıtım kalınlığının Entransy Tabanlı çevre Ve yaşam döngüsü Maliyeti Analizi Ile Belirlenmesi: Yakıt türünün Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 2 (Kasım 2023): 869-82. https://doi.org/10.17341/gazimmfd.1201401.
EndNote Akbulut U (01 Kasım 2023) Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 869–882.
IEEE U. Akbulut, “Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi”, GUMMFD, c. 39, sy. 2, ss. 869–882, 2023, doi: 10.17341/gazimmfd.1201401.
ISNAD Akbulut, Uğur. “Optimum yalıtım kalınlığının Entransy Tabanlı çevre Ve yaşam döngüsü Maliyeti Analizi Ile Belirlenmesi: Yakıt türünün Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (Kasım 2023), 869-882. https://doi.org/10.17341/gazimmfd.1201401.
JAMA Akbulut U. Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi. GUMMFD. 2023;39:869–882.
MLA Akbulut, Uğur. “Optimum yalıtım kalınlığının Entransy Tabanlı çevre Ve yaşam döngüsü Maliyeti Analizi Ile Belirlenmesi: Yakıt türünün Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 2, 2023, ss. 869-82, doi:10.17341/gazimmfd.1201401.
Vancouver Akbulut U. Optimum yalıtım kalınlığının entransy tabanlı çevre ve yaşam döngüsü maliyeti analizi ile belirlenmesi: Yakıt türünün etkisi. GUMMFD. 2023;39(2):869-82.