Araştırma Makalesi
BibTex RIS Kaynak Göster

Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı

Yıl 2024, Cilt: 39 Sayı: 3, 1907 - 1916, 20.05.2024
https://doi.org/10.17341/gazimmfd.1149582

Öz

Bu çalışmada, yoğunluk modülasyonu/doğrudan algılama (IM/DD) haberleşme sistemleri için yayma tabanlı yeni bir optik OFDM dalga formu önerilmektedir. Önerilen dalga formu yayma tekniği ile Flip OFDM dalga formunun birleşiminden oluşmaktadır (Spread Flip OFDM, s-Flip OFDM). Önerilen dalga formunun performansını değerlendirmek ve Flip OFDM, DCO-OFDM ve VLC-OFDM gibi optik OFDM dalga formları ile karşılaştırmak için benzetim çalışmaları yapılmaktadır. Ayrıca sunulan çalışmada, önerilen yayma tekniğinin diğer optik OFDM dalga formlarına etkisi analiz edilmektedir. AWGN kanal, tavan sıçrama, üstel azalan ve üstel artan kanal modellerinin kullanıldığı dağınık optik kablosuz kanal ortamlarında, önerilen yayma tekniğinin optik OFDM dalga formalarının performansına 5 ila 10 dB SNR aralığında kazanç sağladığı anlaşılmaktadır. Elde edilen nümerik sonuçlardan hem AWGN kanal ortamında hem de dağınık çok yollu optik kanal ortamlarında, önerilen s-Flip OFDM dalga formunun s-DCO-OFDM dalga formundan yaklaşık olarak 10 dB ve s-VLC-OFDM dalga formundan da 15 dB daha iyi olduğu görülmektedir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. IEEE 802.15.7TM-2011, IEEE Standard for Local and Metropolitan Area Networks – Part 15.7: Short – Range Wireless Optical Communication Using Visible Light, IEEE, 2011.
  • 2. A. Fişne, Analysis Of Clipping Noise In Visible Light Communication, Hacettepe University, Master of Science, Department of Electrical and Electronics Engineering, Ms.C. Thesis, Ankara, January 2015.
  • 3. T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination”, Proc. of 8th International Symposium on Microwave and Optical Technology (ISMOT 2001), pp. 45-48, Montreal, Canada, 2001.
  • 4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights”, IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, Feb. 2004.
  • 5. D. Tsonev, M.S. Islim, H. Haas, (2016) OFDM-Based Visible Light Communications. In: Uysal M., Capsoni C., Ghassemlooy Z., Boucouvalas A., Udvary E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_12.
  • 6. Y. Sun, F. Yang and L. Cheng, “An Overview of OFDM-Based Visible Light Communication Systems From the Perspective of Energy Efficiency Versus Spectral Efficiency”, IEEE Access, Vol. 6, pp. 60824-60833, November 2018.
  • 7. J. Armstrong, “OFDM for optical communications”, J. Lightwave Technol.vol. 27, no. 3, pp. 189–204, Feb. 2009.
  • 8. J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-Biased optical OFDM in AWGN”, Communications Letters, IEEE, vol. 12, no. 5, pp. 343–345, 2008.
  • 9. N.Fernando, Yi Hong and E.Viterbo “Flip-OFDM for Optical Wireless Communications”, 2011 IEEE Information Theory Workshop, Paraty, Brazil, 2011.
  • 10. J. Armstrong and A. Lowery, “Power efficient optical OFDM,” Electronics Letters, vol. 42, no. 6, pp. 370–372, 2006.
  • 11. J. Yong, “Modulation and demodulation apparatuses and methods for wired / wireless communication,” Korea Patent WO2007/064 165 A, 07, 2007.
  • 12. J. -B. Wang, P. Jiang, J. Wang, M. Chen and J. -Y. Wang, “Data Detection and Code Channel Allocation for Frequency-Domain Spread ACO-OFDM Systems Over Indoor Diffuse Wireless Channels”, in IEEE Photonics Journal, vol. 6, no. 1, pp. 1-16, Feb. 2014, Art no. 6800716, doi: 10.1109/JPHOT.2014.2305736.
  • 13. C. Wu, H. Zhang and W. Xu, “On visible light communication using LED array with DFT-Spread OFDM”, 2014 IEEE International Conference on Communications (ICC), 2014, pp. 3325-3330, doi: 10.1109/ICC.2014.6883834
  • 14. A. Özen, “A Novel QAM Technique for High Order QAM Signaling”, Radioengineering Journal, Vol. 20, Number 3, pp. 683-691, September 2011, ISSN 1210-2512.
  • 15. Standard IEEE 802.16-2004 Local and Metropolitan Area Networks, Part 16: Air interface for fixed broadband wireless access systems, 2004.
  • 16. M. Maraş, A Novel M-Level Modulation Technique Built on the Spreading Method for Visible Light Communication, Ms.C. Thesis, Nuh Naci Yazgan University, The Graduate School of Natural and Applied Sciences, 2022.
  • 17. Z. H. Gebeyehu, Signal Transmission and Detection Scheme for Energy and Spectrally Efficient Indoor Optical Wireless Communications, Ph.D. Thesis, Pan African University Institute for Basic Sciences, Technology and Innovation, 2018.
  • 18. Z. H. Gebeyehu, P. K. Langat and C. W. Maina, “BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel”, Journal of Computer Networks and Communications, vol. 2018, pp. 1-14, Artical ID 9575281, 2018.
  • 19. J. Panta, P. Saengudomlert and K. Sripimanwat, “Performance Analysis of Partial Pre-Equalization for ACO-OFDM Indoor Optical Wireless Transmissions”, 9th International Symposium on Communication Systems, Networks and Digital Sign (CSNDSP), p. 1029–1033, 2014.

A novel optical OFDM waveform design for visible light communication systems

Yıl 2024, Cilt: 39 Sayı: 3, 1907 - 1916, 20.05.2024
https://doi.org/10.17341/gazimmfd.1149582

Öz

In this study, a new spread-based optical OFDM waveform is proposed for intensity modulation/direct detection (IM/DD) communication systems. The proposed waveform is a combination of the spreading technique and the Flip OFDM waveform (Spread Flip OFDM, s-Flip OFDM). Simulation studies are carried out to evaluate the performance of the proposed waveform and compare it with optical OFDM waveforms such as Flip OFDM, DCO-OFDM and VLC-OFDM. In addition, the effect of the proposed spreading technique on other optical OFDM waveforms is analyzed in the presented study. It is understood that the proposed spreading technique provides a gain in the range of 5 to 10 dB SNR to the performance of optical OFDM waveforms in AWGN channel and diffused optical wireless channel environments, where ceiling bounce, exponential decay and exponential risen channel models are used. From the obtained numerical results, it is seen that the proposed s-Flip OFDM waveform is approximately 10 dB superior than the s-DCO-OFDM waveform and 15 dB superior than the s-VLC-OFDM waveform in both AWGN channel and diffused multipath optical channel environments.

Proje Numarası

-

Kaynakça

  • 1. IEEE 802.15.7TM-2011, IEEE Standard for Local and Metropolitan Area Networks – Part 15.7: Short – Range Wireless Optical Communication Using Visible Light, IEEE, 2011.
  • 2. A. Fişne, Analysis Of Clipping Noise In Visible Light Communication, Hacettepe University, Master of Science, Department of Electrical and Electronics Engineering, Ms.C. Thesis, Ankara, January 2015.
  • 3. T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination”, Proc. of 8th International Symposium on Microwave and Optical Technology (ISMOT 2001), pp. 45-48, Montreal, Canada, 2001.
  • 4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights”, IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, Feb. 2004.
  • 5. D. Tsonev, M.S. Islim, H. Haas, (2016) OFDM-Based Visible Light Communications. In: Uysal M., Capsoni C., Ghassemlooy Z., Boucouvalas A., Udvary E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_12.
  • 6. Y. Sun, F. Yang and L. Cheng, “An Overview of OFDM-Based Visible Light Communication Systems From the Perspective of Energy Efficiency Versus Spectral Efficiency”, IEEE Access, Vol. 6, pp. 60824-60833, November 2018.
  • 7. J. Armstrong, “OFDM for optical communications”, J. Lightwave Technol.vol. 27, no. 3, pp. 189–204, Feb. 2009.
  • 8. J. Armstrong and B. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-Biased optical OFDM in AWGN”, Communications Letters, IEEE, vol. 12, no. 5, pp. 343–345, 2008.
  • 9. N.Fernando, Yi Hong and E.Viterbo “Flip-OFDM for Optical Wireless Communications”, 2011 IEEE Information Theory Workshop, Paraty, Brazil, 2011.
  • 10. J. Armstrong and A. Lowery, “Power efficient optical OFDM,” Electronics Letters, vol. 42, no. 6, pp. 370–372, 2006.
  • 11. J. Yong, “Modulation and demodulation apparatuses and methods for wired / wireless communication,” Korea Patent WO2007/064 165 A, 07, 2007.
  • 12. J. -B. Wang, P. Jiang, J. Wang, M. Chen and J. -Y. Wang, “Data Detection and Code Channel Allocation for Frequency-Domain Spread ACO-OFDM Systems Over Indoor Diffuse Wireless Channels”, in IEEE Photonics Journal, vol. 6, no. 1, pp. 1-16, Feb. 2014, Art no. 6800716, doi: 10.1109/JPHOT.2014.2305736.
  • 13. C. Wu, H. Zhang and W. Xu, “On visible light communication using LED array with DFT-Spread OFDM”, 2014 IEEE International Conference on Communications (ICC), 2014, pp. 3325-3330, doi: 10.1109/ICC.2014.6883834
  • 14. A. Özen, “A Novel QAM Technique for High Order QAM Signaling”, Radioengineering Journal, Vol. 20, Number 3, pp. 683-691, September 2011, ISSN 1210-2512.
  • 15. Standard IEEE 802.16-2004 Local and Metropolitan Area Networks, Part 16: Air interface for fixed broadband wireless access systems, 2004.
  • 16. M. Maraş, A Novel M-Level Modulation Technique Built on the Spreading Method for Visible Light Communication, Ms.C. Thesis, Nuh Naci Yazgan University, The Graduate School of Natural and Applied Sciences, 2022.
  • 17. Z. H. Gebeyehu, Signal Transmission and Detection Scheme for Energy and Spectrally Efficient Indoor Optical Wireless Communications, Ph.D. Thesis, Pan African University Institute for Basic Sciences, Technology and Innovation, 2018.
  • 18. Z. H. Gebeyehu, P. K. Langat and C. W. Maina, “BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel”, Journal of Computer Networks and Communications, vol. 2018, pp. 1-14, Artical ID 9575281, 2018.
  • 19. J. Panta, P. Saengudomlert and K. Sripimanwat, “Performance Analysis of Partial Pre-Equalization for ACO-OFDM Indoor Optical Wireless Transmissions”, 9th International Symposium on Communication Systems, Networks and Digital Sign (CSNDSP), p. 1029–1033, 2014.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Meryem Maras 0000-0002-6626-7838

Ali Özen 0000-0003-3232-3181

Proje Numarası -
Erken Görünüm Tarihi 16 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 27 Temmuz 2022
Kabul Tarihi 5 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Maras, M., & Özen, A. (2024). Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1907-1916. https://doi.org/10.17341/gazimmfd.1149582
AMA Maras M, Özen A. Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı. GUMMFD. Mayıs 2024;39(3):1907-1916. doi:10.17341/gazimmfd.1149582
Chicago Maras, Meryem, ve Ali Özen. “Görünür ışık haberleşme Sistemleri için Yeni Bir Optik OFDM Dalga Formu tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1907-16. https://doi.org/10.17341/gazimmfd.1149582.
EndNote Maras M, Özen A (01 Mayıs 2024) Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1907–1916.
IEEE M. Maras ve A. Özen, “Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı”, GUMMFD, c. 39, sy. 3, ss. 1907–1916, 2024, doi: 10.17341/gazimmfd.1149582.
ISNAD Maras, Meryem - Özen, Ali. “Görünür ışık haberleşme Sistemleri için Yeni Bir Optik OFDM Dalga Formu tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1907-1916. https://doi.org/10.17341/gazimmfd.1149582.
JAMA Maras M, Özen A. Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı. GUMMFD. 2024;39:1907–1916.
MLA Maras, Meryem ve Ali Özen. “Görünür ışık haberleşme Sistemleri için Yeni Bir Optik OFDM Dalga Formu tasarımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1907-16, doi:10.17341/gazimmfd.1149582.
Vancouver Maras M, Özen A. Görünür ışık haberleşme sistemleri için yeni bir optik OFDM dalga formu tasarımı. GUMMFD. 2024;39(3):1907-16.