Araştırma Makalesi
BibTex RIS Kaynak Göster

CNTFET VDGA based ultra-low power low voltage high frequency filter applications

Yıl 2024, Cilt: 39 Sayı: 3, 1555 - 1566, 20.05.2024
https://doi.org/10.17341/gazimmfd.1223428

Öz

With approaching the limit value, many problems have arisen in the scaling of MOSFET sizes. Alternative solutions have been investigated for many problems such as short channel effects and reduced gate control, which are caused by reducing the size of the MOSFET. Carbon Nanotube Field Effect Transistor (CNTFET) is considered as the most suitable alternative to replace MOSFET with its superior electrical and mechanical properties. In this study, simulation studies of Voltage Differencing Gain Amplifier structure were carried out using 32 nm CNTFET. In addition, a three-input single-output filter structure is presented with the CNTFET VDGA structure. The filter structure realized at ±0.3V low supply voltage and 1µA low bias current has a higher center frequency of 22.909 MHz compared to the filter structure realized with CMOS VDGA. In addition, the filter made with CNTFET VDGA structure has a low power consumption of 8.3412 µW.

Kaynakça

  • 1. Bala, S., Khosla, M., Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design, Journal of Computational Electronics, 17 16(4), 1528-1535, 2018.
  • 2. Zarandi, A. D., Reshadinezhad, M. R., Rubio, A., A systematic method to design efficient ternary high performance CNTFET-based logic cells, IEEE access, 8, 58585-58593, 2020.
  • 3. Obite, F., Ijeomah, G., Bassi, J. S., Carbon nanotube field effect transistors: toward future nanoscale electronics, International Journal of Computers and Applications, 41 (2), 149-164, 2019.
  • 4. Sachid, A. B., Chen, M. C., Hu, C., FinFET With High-$\kappa $ Spacers for Improved Drive Current, IEEE electron device letters, 37 (7), 835-838, 2016.
  • 5. Bala, S., Khosla, M., Design and simulation of nanoscale double-gate TFET/tunnel CNTFET, Journal of Semiconductors, 39 (4), 044001, 2018.
  • 6. Chiang, T. K., A new threshold voltage model for short-channel junctionless inverted T-shaped gate FETs (JLITFET), IEEE Transactions on Nanotechnology, 15 (3), 442-447, 2016.
  • 7. Prakash, P., Sundaram, K. M., Bennet, M. A., A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications, Renewable and Sustainable Energy Reviews, 89, 194-203, 2018.
  • 8. Sharma, T., Kumre, L., Energy-efficient ternary arithmetic logic unit design in CNTFET technology, Circuits, Systems, and Signal Processing, 39 (7), 3265-3288, 2020.
  • 9. Masud, M., A’ain, A., Khan, I., & Husin, N., Design of voltage mode electronically tunable first order all pass filter in±0.7 V 16 nm CNFET technology, Electronics, 8 (1), 95, 2019.
  • 10. Mamatov, I., Özçelep, Y., Kaçar, F., CNTFET based voltage differencing current conveyor low power and universal filter, Analog Integrated Circuits and Signal Processing, 110 (1), 127-137, 2022.
  • 11. Yasir, M., Alam, N., Design of CNTFET-based CCII using gm/id technique for low-voltage and low-power applications. Journal of Circuits, Systems and Computers, 29 (09), 2050143, 2020.
  • 12. Ercan, H., Tekin, S. A., Alçi, M., Voltage-and current-controlled high CMRR instrumentation amplifier using CMOS current conveyors, Turkish Journal of Electrical Engineering and Computer Sciences, 20 (4), 547-556, 2012.
  • 13. Yadav, N., Rai, S. K., Pandey, R., High frequency electronically tunable floating memristor emulators employing VDGA and grounded capacitor, Wireless Personal Communications, 121 (4), 3185-3211, 2021.
  • 14. Satansup, J., Tangsrirat, W., Single VDGA-based first-order allpass filter with electronically controllable passband gain, In 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, 106-109, 2015.
  • 15. Channumsin, O., Tangsrirat, W., Compact electronically tunable quadrature oscillator using single voltage differencing gain amplifier (VDGA) and all grounded passive elements, Turkish Journal of Electrical Engineering and Computer Sciences, 25 (4), 2686-2695, 2017.
  • 16. Iijima, S., Helical microtubules of graphitic carbon. nature, 354 (6348), 56-58, 1991.
  • 17. Seis M., Subaşı S., Maraşlı M., & Dehghanpour H., Investigation of mechanical and electrical properties of ultra-low rate SWCNT added UHPC, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 509-520, 2023.
  • 18. Sinha, S. K., Chaudhury, S., Advantage of CNTFET characteristics over MOSFET to reduce leakage power, In 2014 2nd international conference on devices, circuits and systems (ICDCS), IEEE, 1-5, 2014.
  • 19. Moaiyeri, M. H., Mirzaee, R. F., Navi, K., Hashemipour, O., Efficient CNTFET-based ternary full adder cells for nanoelectronics. Nano-Micro Letters, 3 (1), 43-50, 2011.
  • 20. Martins-Júnior, P. A., Alcântara, C. E., Resende, R. R., Ferreira, A. J., Carbon nanotubes: directions and perspectives in oral regenerative medicine. Journal of dental research, 92 (7), 575-583, 2013.
  • 21. Cen, M., Song, S., Cai, C., A high performance CNFET-based operational transconductance amplifier and its applications, Analog Integrated Circuits and Signal Processing, 91(3), 463-472, 2017.
  • 22. Satansup, J., Tangsrirat, W., CMOS realization of voltage differencing gain amplifier (VDGA) and its application to biquad filter, Indian Journal of Engineering and Material Sciences, 20 (2013), 457–464, 2013.
  • 23. Arbel, A. F., Goldminz, L., Output stage for current-mode feedback amplifiers, theory and applications, Analog Integrated Circuits and Signal Processing, 2 (3), 243-255, 1992.
  • 24. Lin, A., Wan, G., Deng, J., Wong, H. P., A quick user guide on Stanford university carbon nanotube field effect transistors (CNFET) HSPICE model V. 2.2. 1, 2008.
  • 25. Imran, A., Hasan, M., Islam, A., Abbasi, S. A., Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII, IEEE transactions on Nanotechnology, 11 (6), 1100-1109, 2012.
  • 26. Zanjani, S. M. A., Dousti, M., Dolatshahi, M., A new low-power, universal, multi-mode Gm-C filter in CNTFET technology, Microelectronics Journal, 90, 342-352, 2019.
  • 27. Roongmuanpha, N., Tangsrirat, W., Pukkalanun, T., Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors, 22 (14), 5303, 2022.
  • 28. Channumsin, O., Single VDGA-based dual-mode multifunction biquadratic filter and quadrature sinusoidal oscillator, Informacije MIDEM, 50 (2), 125-136, 2020.
  • 29. Channumsin, O., & Tangsrirat, W., Dual-mode multifunction filter using VDGAs. In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE, pp. 481-484., July, 2018.

CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları

Yıl 2024, Cilt: 39 Sayı: 3, 1555 - 1566, 20.05.2024
https://doi.org/10.17341/gazimmfd.1223428

Öz

MOSFET boyutlarının ölçeklendirilmesinde sınır değere yaklaşılmasıyla birlikte birçok problem ortaya çıkmıştır. MOSFET’in boyutlarının küçültülmesiyle ortaya çıkan kısa kanal etkileri ve azaltılmış geçit kontrolü gibi birçok problemler için alternatif çözüm yolları araştırılmıştır. Karbon Nanotüp Alan Etkili Transistör (CNTFET- Carbon Nanotubes Field Effect Transistors) üstün elektriksel ve mekaniksel özellikleri ile MOSFET’ in yerini alacak en uygun alternatif olarak düşünülmektedir. Bu çalışmada, 32 nm CNTFET kullanılarak Voltaj Farkı Alan Kazanç Kuvvetlendirici (VDGA-Voltage Differencing Gain Amplifier) yapısının benzetim çalışmaları yapılmıştır. Buna ek olarak CNTFET VDGA yapısı ile üç girişli tek çıkışlı filtre yapısı sunulmuştur. ±0.3V düşük besleme voltajında ve 1µA düşük kutuplama akımında gerçekleştirilen filtre yapısı, CMOS VDGA ile gerçekleştirilen filtre yapısına kıyasla 22,909 MHz gibi daha yüksek merkez frekansına sahiptir. Ayrıca CNTFET VDGA yapısıyla gerçekleştirilen filtre 8,3412 µW düşük güç tüketimine sahiptir.

Kaynakça

  • 1. Bala, S., Khosla, M., Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design, Journal of Computational Electronics, 17 16(4), 1528-1535, 2018.
  • 2. Zarandi, A. D., Reshadinezhad, M. R., Rubio, A., A systematic method to design efficient ternary high performance CNTFET-based logic cells, IEEE access, 8, 58585-58593, 2020.
  • 3. Obite, F., Ijeomah, G., Bassi, J. S., Carbon nanotube field effect transistors: toward future nanoscale electronics, International Journal of Computers and Applications, 41 (2), 149-164, 2019.
  • 4. Sachid, A. B., Chen, M. C., Hu, C., FinFET With High-$\kappa $ Spacers for Improved Drive Current, IEEE electron device letters, 37 (7), 835-838, 2016.
  • 5. Bala, S., Khosla, M., Design and simulation of nanoscale double-gate TFET/tunnel CNTFET, Journal of Semiconductors, 39 (4), 044001, 2018.
  • 6. Chiang, T. K., A new threshold voltage model for short-channel junctionless inverted T-shaped gate FETs (JLITFET), IEEE Transactions on Nanotechnology, 15 (3), 442-447, 2016.
  • 7. Prakash, P., Sundaram, K. M., Bennet, M. A., A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications, Renewable and Sustainable Energy Reviews, 89, 194-203, 2018.
  • 8. Sharma, T., Kumre, L., Energy-efficient ternary arithmetic logic unit design in CNTFET technology, Circuits, Systems, and Signal Processing, 39 (7), 3265-3288, 2020.
  • 9. Masud, M., A’ain, A., Khan, I., & Husin, N., Design of voltage mode electronically tunable first order all pass filter in±0.7 V 16 nm CNFET technology, Electronics, 8 (1), 95, 2019.
  • 10. Mamatov, I., Özçelep, Y., Kaçar, F., CNTFET based voltage differencing current conveyor low power and universal filter, Analog Integrated Circuits and Signal Processing, 110 (1), 127-137, 2022.
  • 11. Yasir, M., Alam, N., Design of CNTFET-based CCII using gm/id technique for low-voltage and low-power applications. Journal of Circuits, Systems and Computers, 29 (09), 2050143, 2020.
  • 12. Ercan, H., Tekin, S. A., Alçi, M., Voltage-and current-controlled high CMRR instrumentation amplifier using CMOS current conveyors, Turkish Journal of Electrical Engineering and Computer Sciences, 20 (4), 547-556, 2012.
  • 13. Yadav, N., Rai, S. K., Pandey, R., High frequency electronically tunable floating memristor emulators employing VDGA and grounded capacitor, Wireless Personal Communications, 121 (4), 3185-3211, 2021.
  • 14. Satansup, J., Tangsrirat, W., Single VDGA-based first-order allpass filter with electronically controllable passband gain, In 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, 106-109, 2015.
  • 15. Channumsin, O., Tangsrirat, W., Compact electronically tunable quadrature oscillator using single voltage differencing gain amplifier (VDGA) and all grounded passive elements, Turkish Journal of Electrical Engineering and Computer Sciences, 25 (4), 2686-2695, 2017.
  • 16. Iijima, S., Helical microtubules of graphitic carbon. nature, 354 (6348), 56-58, 1991.
  • 17. Seis M., Subaşı S., Maraşlı M., & Dehghanpour H., Investigation of mechanical and electrical properties of ultra-low rate SWCNT added UHPC, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 509-520, 2023.
  • 18. Sinha, S. K., Chaudhury, S., Advantage of CNTFET characteristics over MOSFET to reduce leakage power, In 2014 2nd international conference on devices, circuits and systems (ICDCS), IEEE, 1-5, 2014.
  • 19. Moaiyeri, M. H., Mirzaee, R. F., Navi, K., Hashemipour, O., Efficient CNTFET-based ternary full adder cells for nanoelectronics. Nano-Micro Letters, 3 (1), 43-50, 2011.
  • 20. Martins-Júnior, P. A., Alcântara, C. E., Resende, R. R., Ferreira, A. J., Carbon nanotubes: directions and perspectives in oral regenerative medicine. Journal of dental research, 92 (7), 575-583, 2013.
  • 21. Cen, M., Song, S., Cai, C., A high performance CNFET-based operational transconductance amplifier and its applications, Analog Integrated Circuits and Signal Processing, 91(3), 463-472, 2017.
  • 22. Satansup, J., Tangsrirat, W., CMOS realization of voltage differencing gain amplifier (VDGA) and its application to biquad filter, Indian Journal of Engineering and Material Sciences, 20 (2013), 457–464, 2013.
  • 23. Arbel, A. F., Goldminz, L., Output stage for current-mode feedback amplifiers, theory and applications, Analog Integrated Circuits and Signal Processing, 2 (3), 243-255, 1992.
  • 24. Lin, A., Wan, G., Deng, J., Wong, H. P., A quick user guide on Stanford university carbon nanotube field effect transistors (CNFET) HSPICE model V. 2.2. 1, 2008.
  • 25. Imran, A., Hasan, M., Islam, A., Abbasi, S. A., Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII, IEEE transactions on Nanotechnology, 11 (6), 1100-1109, 2012.
  • 26. Zanjani, S. M. A., Dousti, M., Dolatshahi, M., A new low-power, universal, multi-mode Gm-C filter in CNTFET technology, Microelectronics Journal, 90, 342-352, 2019.
  • 27. Roongmuanpha, N., Tangsrirat, W., Pukkalanun, T., Single VDGA-Based Mixed-Mode Universal Filter and Dual-Mode Quadrature Oscillator. Sensors, 22 (14), 5303, 2022.
  • 28. Channumsin, O., Single VDGA-based dual-mode multifunction biquadratic filter and quadrature sinusoidal oscillator, Informacije MIDEM, 50 (2), 125-136, 2020.
  • 29. Channumsin, O., & Tangsrirat, W., Dual-mode multifunction filter using VDGAs. In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE, pp. 481-484., July, 2018.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şeyda Sunca 0000-0001-5011-4952

Mustafa Alçı 0000-0001-5478-6908

Erken Görünüm Tarihi 19 Ocak 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 23 Aralık 2022
Kabul Tarihi 24 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Sunca, Ş., & Alçı, M. (2024). CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1555-1566. https://doi.org/10.17341/gazimmfd.1223428
AMA Sunca Ş, Alçı M. CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları. GUMMFD. Mayıs 2024;39(3):1555-1566. doi:10.17341/gazimmfd.1223428
Chicago Sunca, Şeyda, ve Mustafa Alçı. “CNTFET VDGA Tabanlı Ultra düşük güç düşük Voltaj yüksek Frekanslı Filtre Uygulamaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1555-66. https://doi.org/10.17341/gazimmfd.1223428.
EndNote Sunca Ş, Alçı M (01 Mayıs 2024) CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1555–1566.
IEEE Ş. Sunca ve M. Alçı, “CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları”, GUMMFD, c. 39, sy. 3, ss. 1555–1566, 2024, doi: 10.17341/gazimmfd.1223428.
ISNAD Sunca, Şeyda - Alçı, Mustafa. “CNTFET VDGA Tabanlı Ultra düşük güç düşük Voltaj yüksek Frekanslı Filtre Uygulamaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1555-1566. https://doi.org/10.17341/gazimmfd.1223428.
JAMA Sunca Ş, Alçı M. CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları. GUMMFD. 2024;39:1555–1566.
MLA Sunca, Şeyda ve Mustafa Alçı. “CNTFET VDGA Tabanlı Ultra düşük güç düşük Voltaj yüksek Frekanslı Filtre Uygulamaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1555-66, doi:10.17341/gazimmfd.1223428.
Vancouver Sunca Ş, Alçı M. CNTFET VDGA tabanlı ultra düşük güç düşük voltaj yüksek frekanslı filtre uygulamaları. GUMMFD. 2024;39(3):1555-66.