Araştırma Makalesi
BibTex RIS Kaynak Göster

Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi

Yıl 2024, Cilt: 39 Sayı: 3, 1745 - 1758, 20.05.2024
https://doi.org/10.17341/gazimmfd.1299616

Öz

Bu çalışmada, pompa hattı ile cazibeli akışlı hat bir kolektör sisteminde birleştirilerek büyük bir şehre su iletmektedir. Bu şekilde çalışan pompaların debi ve enerji kayıpları, deneysel ve sayısal olarak incelenmiştir. Deneysel çalışmalarda pompalar çalıştırıldığı esnada pompa hattına yüksek basınçlı cazibeli bir akışın girmesine izin verilmiştir. Bu durumda pompaların debileri ve şebekeden çektikleri elektriksel güç kontrol edilmiştir. Daha sonra pompa hattına giren akış vana ile kesilerek pompalar tekrar çalıştırılmıştır. Her iki durumun sonuçları karşılaştırılmıştır. Pompaların harcadığı elektrik enerjisi ve verimleri hesaplanmıştır. Farklı senaryolarda paralel bağlı olarak çalışan pompalar için en ekonomik çalışan pompa grupları listelenmiştir. Tüm senaryolar sonrasında enerji ve maliyet hesaplamaları yapılmıştır. Boru içerisinde debi ve enerji kayıplarına sebep olan akışları görmek için HAD yöntemi ile sayısal analizler yapılmıştır. Deneysel çalışmalarda pompa hattının başka hatlarla birleştirilmesinin yüksek enerji kayıplarına neden olduğu gözlemlenmiştir. Aynı debideki suyun %54,95 daha az maliyetle verilebileceği hesaplanmıştır. Daha fazla su vermek için daha fazla pompa çalıştırmak yerine analizler yardımıyla doğru pompaların çalıştırılması gerektiği sonucuna varılmıştır. Sayısal analiz sonucunda boru içerisindeki akışın durumu net olarak görülmüştür.

Teşekkür

Bu çalışma boyunca Ömerli İçme Suyu ve Arıtma Tesisi içinde gerekli ortamın ve yardımın sağlanması dolayısıyla İSKİ’ye teşekkür ederim.

Kaynakça

  • 1. Kaya, D., Çanka Kılıç, F., Öztürk, H. H., Energy efficiency in pumps, In Energy Management and Energy Efficiency in Industry: Practical Examples, s. 329-374. Cham: Springer International Publishing, 2021.
  • 2. İSKİ. 2022 Faaliyet Raporu, https://www.iski.istanbul/web/tr-TR/kurumsal/stratejik-plan-ve-performans-programi1/faaliyet-raporlari2. Yayın tarihi 2022. Erişim tarihi, Haziran 8, 2023.
  • 3. Moreno, M. A., Carrio´n, P. A., Planells, P., Ortega, J. F. ve Tarjuelo, J. M., Measurement and improvement of the energy efficiency at pumping stations, Biosystems Engineering, 98 (4), 479-486, 2007.
  • 4. Nassiri, S., Labbadi, M., Cherkaoui, M., Optimal integral super-twisting sliding-mode control for high efficiency of pumping systems, International Federation of Automatic Control, 55 (12), 234-239, 2022.
  • 5. Arslan, S. ve Sahib, A. A., Comparison of energy efficiencies of a small centrifugal pump at constant and variable speed operations, Journal of Agricultural Sciences, 22 (3), 444-454, 2016.
  • 6. Guyer, J. P., P. E. ve R. A., An introduction to pumping stations for water supply systems, California: Createspace Independent Pub, 2013.
  • 7. Noon, A. A., Jabbar, A.U., Koten, H., Kim, M.-H., Ahmed, H.W., Mueed, U., Shoukat, A.A., Anwar, B., Strive to reduce slurry erosion and cavitation in pumps through flow modifications, design optimization and some other techniques: long term impact on process industry, Materials, 14 (3), 521, 2021.
  • 8. Özbey M., Gürbüz M., Karakurt U., Experimental investigation of the effects of hydrophobic impeller surfaces on the centrifugal pump performance, Journal of the Faculty of Engineering and Architecture of Gazi University 36 (1), 267-274, 2021.
  • 9. Ayder, E., Kalmanoğlu, U. ve T.A.A.G., Pompa El Kitabı, Türbosan, İstanbul, 2017.
  • 10. Zhang W. ve Li, A., Resistance reduction via guide vane in dividing manifold systems with parallel pipe arrays (DMS-PPA) based on analysis of energy dissipation, Building and Environment, 189-198, 2018.
  • 11. Minocha, N. ve Joshi, J. B., 3D CFD simulation of turbulent flow distribution and pressure drop in a dividing manifold system using openfoam, International Journal of Heat and Mass Transfer, 151, 2020.
  • 12. Wang, J., Gao, Z., Gan, G. ve Wu, D., Analytical solution of flow coefficients for a uniformly distributed porous channel, Chemical Engineering Journal, 84 (1),1-6, 2001.
  • 13. Hassan, M.J., AbdulRazzaq, A., Kamil, B.K., Flow distribution in manifolds, Journal of Engineering and Development, 12 (4), 159-177, 2008.
  • 14. Datta, A. B. ve Majumdar, A. K., Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow, 2 (4), 253-262, 1980.
  • 15. Bajura, R. A., A model for flow distribution in manifolds, ASME Journal of Engineering for Power, 1 (93), 7-12, 1971.
  • 16. Wang J., Theory of flow distribution in manifolds, Chemical Engineering Journal, 3 (168) 1331-1354, 2011.
  • 17. Hua, J., Zhang, S. ve Fu, L., Similitude criterion derivation and pipe physical property test and suitable analysis for water hammer scale model of long distance district heating pipeline, Applied Thermal Engineering, 125, 80-90, 2017.
  • 18. Quintanar, N. R., Nguyen, T., Vaghetto, R. ve Hassan, Y. A., Natural circulation flow distribution within a multi-branch manifold, International Journal of Heat and Mass Transfer, 135, 1-15, 2019.
  • 19. Hassan, J.M., Mohamed, T.A., Mohamed, W.S., Alawee, W. H., Modeling the uniformity of manifold with various configurations, Journal of Fluids, 2014 (11), 2014.
  • 20. Hassan, J. M., Mohammed, W. S., Mohamed, T. A. ve Alawee, W. H., CFD Simulation for manifold with tapered longitudinal section, International Journal of Emerging Technology and Advanced Engineering, 4 (2), 2014.
  • 21. Küçük H., Turan M., Yaralı K., Al-Sanabani H., İskefiyeli M., A new algorithm for load shifting operation of water pumping stations, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2081-2094, 2021.
  • 22. Koca, A. O., Atmaca, M., Investigation of the Effects of Combined Gravity Lines and Pressure Lines on Pumps in Drinking Water Supply, International Journal of Advances in Engineering and Pure Sciences 35 (2), 273-284, 2023.
  • 23. Düz, H., Numerical Analysis of Entrance Length in Steady and Incompressible Pipe Flow, Batman University Journal of Life Sciences, 8 (2), 2018.
  • 24. Khalaji, M.N., Osta, M.H., Yakut, K., Numerical analysis of heat transfer of hot oil and cold water fluids in a concentric type heat exchanger with Ansys fluent, International Journal of Innovative Research and Reviews, 2 (2), 24-27, 2018.
  • 25. Okbaz, A., Onbaşıoğlu, H., Olcay, A.B., Pınarbaşı, A., Investigation of Louvered Fin Heat Exchangers Performance via Experimental and Computational Fluid Dynamics Approach, Engineer and Machinery, 58 (687), 41-55, 2017.
  • 26. T.C. Enerji Piyasası Düzenleme Kurumu, https://www.epdk.gov.tr/Detay/Icerik/3-1327/elektrik-faturalarina-esas-tarife-tablolari. Erişim tarihi: Ocak 26, 2023.

Experimental and numerical investigation of flow rate and energy losses in pumps and piping systems

Yıl 2024, Cilt: 39 Sayı: 3, 1745 - 1758, 20.05.2024
https://doi.org/10.17341/gazimmfd.1299616

Öz

In this study, a line conveying water by pumping and a gravity flow line are combined into a pipeline header to supply a large city with water. The flow and energy losses of the pumps running under these conditions are investigated experimentally and numerically. In the experimental studies, a high pressure gravity flow was diverted to the pump-fed line while the pumps were operating. The flow rates of the pumps and the electrical power supplied from the grid were measured in this case. Then, the flow entering the pumped system was cut off by a valve and the pumps were restarted. The results of both cases were compared. The electrical energy consumed by the pumps and their efficiency were calculated. The most economical pump groups were listed for the pumps operating in parallel in different scenarios. Following all scenarios, energy and cost calculations were made. Numerical analyses were performed with CFD method in order to observe the flows that caused flow and energy losses in the pipe. In the experimental studies, it was observed that connecting the pump line with other lines caused high energy losses. It is estimated that the pumps could deliver water by consuming 54,95% less energy. It is concluded that instead of running more pumps to deliver more water, the right pumps should be operated thanks to the analyses. As a result of the numerical analysis, the flow in the pipe is clearly observed.

Kaynakça

  • 1. Kaya, D., Çanka Kılıç, F., Öztürk, H. H., Energy efficiency in pumps, In Energy Management and Energy Efficiency in Industry: Practical Examples, s. 329-374. Cham: Springer International Publishing, 2021.
  • 2. İSKİ. 2022 Faaliyet Raporu, https://www.iski.istanbul/web/tr-TR/kurumsal/stratejik-plan-ve-performans-programi1/faaliyet-raporlari2. Yayın tarihi 2022. Erişim tarihi, Haziran 8, 2023.
  • 3. Moreno, M. A., Carrio´n, P. A., Planells, P., Ortega, J. F. ve Tarjuelo, J. M., Measurement and improvement of the energy efficiency at pumping stations, Biosystems Engineering, 98 (4), 479-486, 2007.
  • 4. Nassiri, S., Labbadi, M., Cherkaoui, M., Optimal integral super-twisting sliding-mode control for high efficiency of pumping systems, International Federation of Automatic Control, 55 (12), 234-239, 2022.
  • 5. Arslan, S. ve Sahib, A. A., Comparison of energy efficiencies of a small centrifugal pump at constant and variable speed operations, Journal of Agricultural Sciences, 22 (3), 444-454, 2016.
  • 6. Guyer, J. P., P. E. ve R. A., An introduction to pumping stations for water supply systems, California: Createspace Independent Pub, 2013.
  • 7. Noon, A. A., Jabbar, A.U., Koten, H., Kim, M.-H., Ahmed, H.W., Mueed, U., Shoukat, A.A., Anwar, B., Strive to reduce slurry erosion and cavitation in pumps through flow modifications, design optimization and some other techniques: long term impact on process industry, Materials, 14 (3), 521, 2021.
  • 8. Özbey M., Gürbüz M., Karakurt U., Experimental investigation of the effects of hydrophobic impeller surfaces on the centrifugal pump performance, Journal of the Faculty of Engineering and Architecture of Gazi University 36 (1), 267-274, 2021.
  • 9. Ayder, E., Kalmanoğlu, U. ve T.A.A.G., Pompa El Kitabı, Türbosan, İstanbul, 2017.
  • 10. Zhang W. ve Li, A., Resistance reduction via guide vane in dividing manifold systems with parallel pipe arrays (DMS-PPA) based on analysis of energy dissipation, Building and Environment, 189-198, 2018.
  • 11. Minocha, N. ve Joshi, J. B., 3D CFD simulation of turbulent flow distribution and pressure drop in a dividing manifold system using openfoam, International Journal of Heat and Mass Transfer, 151, 2020.
  • 12. Wang, J., Gao, Z., Gan, G. ve Wu, D., Analytical solution of flow coefficients for a uniformly distributed porous channel, Chemical Engineering Journal, 84 (1),1-6, 2001.
  • 13. Hassan, M.J., AbdulRazzaq, A., Kamil, B.K., Flow distribution in manifolds, Journal of Engineering and Development, 12 (4), 159-177, 2008.
  • 14. Datta, A. B. ve Majumdar, A. K., Flow distribution in parallel and reverse flow manifolds, International Journal of Heat and Fluid Flow, 2 (4), 253-262, 1980.
  • 15. Bajura, R. A., A model for flow distribution in manifolds, ASME Journal of Engineering for Power, 1 (93), 7-12, 1971.
  • 16. Wang J., Theory of flow distribution in manifolds, Chemical Engineering Journal, 3 (168) 1331-1354, 2011.
  • 17. Hua, J., Zhang, S. ve Fu, L., Similitude criterion derivation and pipe physical property test and suitable analysis for water hammer scale model of long distance district heating pipeline, Applied Thermal Engineering, 125, 80-90, 2017.
  • 18. Quintanar, N. R., Nguyen, T., Vaghetto, R. ve Hassan, Y. A., Natural circulation flow distribution within a multi-branch manifold, International Journal of Heat and Mass Transfer, 135, 1-15, 2019.
  • 19. Hassan, J.M., Mohamed, T.A., Mohamed, W.S., Alawee, W. H., Modeling the uniformity of manifold with various configurations, Journal of Fluids, 2014 (11), 2014.
  • 20. Hassan, J. M., Mohammed, W. S., Mohamed, T. A. ve Alawee, W. H., CFD Simulation for manifold with tapered longitudinal section, International Journal of Emerging Technology and Advanced Engineering, 4 (2), 2014.
  • 21. Küçük H., Turan M., Yaralı K., Al-Sanabani H., İskefiyeli M., A new algorithm for load shifting operation of water pumping stations, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2081-2094, 2021.
  • 22. Koca, A. O., Atmaca, M., Investigation of the Effects of Combined Gravity Lines and Pressure Lines on Pumps in Drinking Water Supply, International Journal of Advances in Engineering and Pure Sciences 35 (2), 273-284, 2023.
  • 23. Düz, H., Numerical Analysis of Entrance Length in Steady and Incompressible Pipe Flow, Batman University Journal of Life Sciences, 8 (2), 2018.
  • 24. Khalaji, M.N., Osta, M.H., Yakut, K., Numerical analysis of heat transfer of hot oil and cold water fluids in a concentric type heat exchanger with Ansys fluent, International Journal of Innovative Research and Reviews, 2 (2), 24-27, 2018.
  • 25. Okbaz, A., Onbaşıoğlu, H., Olcay, A.B., Pınarbaşı, A., Investigation of Louvered Fin Heat Exchangers Performance via Experimental and Computational Fluid Dynamics Approach, Engineer and Machinery, 58 (687), 41-55, 2017.
  • 26. T.C. Enerji Piyasası Düzenleme Kurumu, https://www.epdk.gov.tr/Detay/Icerik/3-1327/elektrik-faturalarina-esas-tarife-tablolari. Erişim tarihi: Ocak 26, 2023.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Osman Koca 0000-0001-5645-7171

Mustafa Atmaca 0000-0003-3906-9606

Erken Görünüm Tarihi 19 Ocak 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 19 Mayıs 2023
Kabul Tarihi 30 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Koca, A. O., & Atmaca, M. (2024). Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1745-1758. https://doi.org/10.17341/gazimmfd.1299616
AMA Koca AO, Atmaca M. Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi. GUMMFD. Mayıs 2024;39(3):1745-1758. doi:10.17341/gazimmfd.1299616
Chicago Koca, Ali Osman, ve Mustafa Atmaca. “Pompa Ve Borulama Sistemlerindeki Debi Ve Enerji kayıplarının Deneysel Ve sayısal Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1745-58. https://doi.org/10.17341/gazimmfd.1299616.
EndNote Koca AO, Atmaca M (01 Mayıs 2024) Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1745–1758.
IEEE A. O. Koca ve M. Atmaca, “Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi”, GUMMFD, c. 39, sy. 3, ss. 1745–1758, 2024, doi: 10.17341/gazimmfd.1299616.
ISNAD Koca, Ali Osman - Atmaca, Mustafa. “Pompa Ve Borulama Sistemlerindeki Debi Ve Enerji kayıplarının Deneysel Ve sayısal Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1745-1758. https://doi.org/10.17341/gazimmfd.1299616.
JAMA Koca AO, Atmaca M. Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi. GUMMFD. 2024;39:1745–1758.
MLA Koca, Ali Osman ve Mustafa Atmaca. “Pompa Ve Borulama Sistemlerindeki Debi Ve Enerji kayıplarının Deneysel Ve sayısal Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1745-58, doi:10.17341/gazimmfd.1299616.
Vancouver Koca AO, Atmaca M. Pompa ve borulama sistemlerindeki debi ve enerji kayıplarının deneysel ve sayısal olarak incelenmesi. GUMMFD. 2024;39(3):1745-58.