Araştırma Makalesi
BibTex RIS Kaynak Göster

Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi

Yıl 2025, Cilt: 40 Sayı: 1, 313 - 330
https://doi.org/10.17341/gazimmfd.1280971

Öz

Gerilim kararlılığı, güç sistemlerinde incelenmesi gereken önemli bir konudur. Sürekli artan elektrik enerjisi talebi, artan talebi karşılamak için yeni elektrik üretim santrallerinin kurulumu ve güç sistem arızaları gerilim kararlılığını olumsuz yönde etkilemektedir. Günümüzde gerilim kararlılığını iyileştirmek için güç sistemlerinde Esnek Alternatif Akım İletim Sistemleri (FACTS cihazları) kullanılmakta olup, ayrıca enerji talebini karşılamak ve gerilim kararlılığını iyileştirmek için güç sistemlerine Dağıtık Üretim Kaynakları (DGs) entegre edilmektedir. Bu çalışmada, IEEE 30 baralı güç sistemi ile Kuzeybatı Anadolu (KBA) güç sistemi, gerilim kararlılığı bakımından temel (nominal), aşırı yüklenme ve hat kopması durumlarında incelenmiştir. İncelenen güç sistemlerine FACTS cihazlarından Statik Var Kompanzatör (SVC) ve Tristör Kontrollü Seri Kapasitör (TCSC), DGs’lerden ise Yakıt Hücresi (YH), Güneş Enerji Santrali (GES) ve Rüzgâr Enerji Santrali (RES) ayrı ayrı ve birlikte bağlanmıştır. Güç sistemlerinin bara gerilim değerlerinde ve yüklenme parametresinde meydana gelen değişimler analiz edilmiştir.

Kaynakça

  • 1. Nafeh A.A., Heikal A., El-Sehiemy R.A., Salem W.A.A., Intelligent fuzzy-based controllers for voltage stability enhancement of AC-DC micro-grid with D-STATCOM, Alexandria Engineering Journal, 61 (3), 2260-2293, 2022.
  • 2. Lin Y., Zhang X., Wang J., Shi D., Bian D., Voltage Stability Constrained Optimal Power Flow for Unbalanced Distribution System Based on Semidefinite Programming, Journal of Modern Power Systems and Clean Energy, 10 (6), 1614-1624, 2022.
  • 3. Amroune M., Machine Learning Techniques Applied to On-Line Voltage Stability Assessment: A Review, Archives of Computational Methods in Engineering, 28 (2), 273-287, 2021.
  • 4. Adebayo I.G., Sun Y., Performance Evaluation of Voltage Stability Indices for a Static Voltage Collapse Prediction, 2020 IEEE PES/IAS PowerAfrica, Nairobi-Kenya, 1-5, 25-28 August, 2020.
  • 5. Liu H., Su J., Yang Y., Qin Z., Li C., Compatible Decentralized Control of AVR and PSS for Improving Power System Stability, IEEE Syst J, 15 (2), 2410-2419, 2021.
  • 6. Nahid-Al-Masood, Shazon M.N.H., Deeba S.R., Modak S.R., A Frequency and Voltage Stability-Based Load Shedding Technique for Low Inertia Power Systems, IEEE Access, 9, 78947-78961, 2021.
  • 7. Bakir H., Kulaksiz A.A., Modelling and voltage control of the solar-wind hybrid micro-grid with optimized STATCOM using GA and BFA, Engineering Science and Technology, an International Journal, 23 (3), 576-584, 2020.
  • 8. Sriram C., Kishore M.N.R., Teaching Distance Relay Protection and Circuit Breaker Co-ordination of an IEEE 9 Bus System Using MATLAB/SIMULINK, Lecture Notes in Electrical Engineering, 626, 439-447, 2020.
  • 9. Essallah S., Bouallegue A., Khedher A., Integration of automatic voltage regulator and power system stabilizer: small-signal stability in DFIG-based wind farms, Journal of Modern Power Systems and Clean Energy, 7 (5), 1115-1128, 2019.
  • 10. Laghari J.A., Mokhlis H., Bakar A.H.A., Mohamad H., Application of computational intelligence techniques for load shedding in power systems: A review, Energy Convers Manag., 75, 130-140, 2013.
  • 11. El-Ela A.A.A., El-Sehiemy R.A., Abbas A.S., Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm, IEEE Syst J., 12 (4), 3629-3636, 2018.
  • 12. Roshan R., Samal P., Sinha P., Optimal placement of FACTS devices in power transmission network using power stability index and fast voltage stability index, 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur-India, 246-251, 14-15 February, 2020.
  • 13. Kamarposhti M.A., Lesani H., Effects of STATCOM, TCSC, SSSC and UPFC on static voltage stability, Electrical Engineering, 93 (1), 33-42, 2011.
  • 14. Oukennou A., Sandali A., Assessment and analysis of Voltage Stability Indices in electrical network using PSAT Software, 18th International Middle-East Power Systems Conference (MEPCON), Cairo-Egypt, 705-710, 27-29 December, 2016.
  • 15. Hu S., Xiang Y., Zhang X., Liu J., Wang R., Hong B., Reactive power operability of distributed energy resources for voltage stability of distribution networks, Journal of Modern Power Systems and Clean Energy, 7 (4), 851-861, 2019.
  • 16. Duong M.Q., Pham T.D., Nguyen T.T., Doan A.T., van Tran H., Determination of optimal location and sizing of solar photovoltaic distribution generation units in radial distribution systems, Energies, 12 (1), 1-24, 2019.
  • 17. AL Rhia R., Daghrour H., Alsamara M., Optimal Location of Distributed Generation and its Impacts on Voltage Stability, 12th International Renewable Engineering Conference (IREC), Amman-Jordan, 6-11, 14-15 April, 2021.
  • 18. Essallah S., Khedher A., Bouallegue A., Integration of distributed generation in electrical grid: Optimal placement and sizing under different load conditions, Computers and Electrical Engineering, 79, 1-14, 2019. 19. Tostado M., Kamel S., Jurado F., Developed Newton-Raphson based Predictor-Corrector load flow approach with high convergence rate, International Journal of Electrical Power and Energy Systems, 105, 785-792, 2019.
  • 20. Abokrisha M., Diaa A., Selim A., Kamel S., Development of Newton-raphson power-flow method based on second order multiplier, 19th International Middle-East Power Systems Conference (MEPCON), Cairo-Egypt, 976-980, 19-21 December, 2017.
  • 21. Yetkin E.F., Assesment of soft error sensitivity of power flow analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 579-589, 2023.
  • 22. Grisales-Noreña L.F, Morales-Duran J.C., Velez-Garcia S., Montoya O.D., Gil-González W., Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations, Results in Engineering, 17, 1-9, 2023.
  • 23. Kumar S., Kumar A., Sharma N.K., Analysis of power flow, continuous power flow and transient stability of IEEE-14 bus integrated wind farm using PSAT, 2015 International Conference on Energy Economics and Environment (ICEEE), Greater Noida-India, 10-15, 27-28 March, 2015.
  • 24. Kundur P., Power System Stability and Control. McGraw-Hill, New York, USA, 1994.
  • 25. Dong X., Wang C., Yun Z., et al, Calculation of optimal load margin based on improved continuation power flow model, International Journal of Electrical Power and Energy Systems, 94, 225-233, 2018.
  • 26. Salama H.S., Vokony I., Voltage stability indices–A comparison and a review. Computers and Electrical Engineering, 98, 1-26, 2022.
  • 27. Sahari S., Abidin A.F., Rahman T.K.A., Development of artificial neural network for voltage stability monitoring, 2003 National Power Engineering Conference (PECon), Bangi-Malaysia, 37-42, 15-16 December, 2003.
  • 28. AL Ahmad A., Sirjani R., Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review, Ain Shams Engineering Journal, 11 (3), 611-628, 2020.
  • 29. Zhang X.P., Rehtanz C., Pal B., Flexible AC Transmission Systems: Modelling and Control, Springer, Berlin, Germany, 2012.
  • 30. Muisyo I.N., Kaberere K.K., Utilization of FACTS devices in power systems: A review. In: Proceedings of Sustainable Research and Innovation Conference, 1-7, 2018.
  • 31. Ertay M.M., Aydoğmuş Z., Güç sistemlerinde FACTS uygulamaları, SDU International Journal of Technologic Sciences, 40 (2), 40-58, 2012.
  • 32. Sharma A.K., Mittapalli R.K., Pal Y., FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets. Journal of The Institution of Engineers (India): Series B, 97 (3), 339-354, 2016.
  • 33. Acharya N., Sode-Yome A., Mithulananthan N., Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits, Australian Universities Power Engineering Conference (AUPEC), 1-7, 2005.
  • 34. Le V.D., Li X., Li P., Le C.Q., A novel approach for determining optimal number and placement of static var compensator device to enhance the dynamic performance in power systems, Electrical Engineering, 100 (3), 1517-1533, 2018.
  • 35. Eltamaly A.M., El-Sayed A.H.M., Mohamed Y.S., Elghaffar A.N.A., A modified techniques of transmission system by static var compensation (SVC) for voltage control, 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama-Bahrain, 1-5, 15-17 April, 2019.
  • 36. Kamel S., Abokrisha M., Selim A., Jurado F., Power flow control of power systems based on a simple TCSC model, Ain Shams Engineering Journal, 12 (3), 2781-2788, 2021.
  • 37. Sayed F., Kamel S., Taher M.A., Jurado F., Enhancing power system loadability and optimal load shedding based on TCSC allocation using improved moth flame optimization algorithm, Electrical Engineering, 103 (1), 205-225, 2021.
  • 38. Worighi I., Maach A., Hafid A., Hegazy O., van Mierlo J., Integrating renewable energy in smart grid system: Architecture, virtualization and analysis, Sustainable Energy, Grids and Networks, 18, 1-13, 2019.
  • 39. Kumar G.B.A., Shivashankar, Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system, International Journal of Energy and Environmental Engineering, 13 (1), 77-103, 2022.
  • 40. García D., Luis J., Modeling and Control of Squirrel Cage Induction Generator with Full Power Converter Applied to Windmills, e-report, Oulun Yliopisto University of Oulu, Finland, 2009.
  • 41. Hiremath R., Moger T., Comprehensive review on low voltage ride through capability of wind turbine generators, International Transactions on Electrical Energy Systems, 30 (10), 1-39, 2020.
  • 42. Abd Aziz A.J., Baharuddin N.A., Somalu M.R., Muchtar A., Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications, Ceram Int., 46 (15), 23314-23325, 2020.
  • 43. Singh M., Zappa D., Comini E., Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int J Hydrogen Energy, 46 (54), 27643-27674, 2021.

Improvement of voltage stability and loading capacity using FACTS devices and distributed generation resources in power systems

Yıl 2025, Cilt: 40 Sayı: 1, 313 - 330
https://doi.org/10.17341/gazimmfd.1280971

Öz

Voltage stability is an important issue to be studied in power systems. The ever-increasing demand of electrical energy, new power generation plant installations to meet the increasing demand to meet the increasing demand, and failures in the power system adversely affect the voltage stability. Today, Flexible Alternating Current Transmission Systems (FACTS devices) are used in power systems to improve voltage stability, and Distributed Generation sources (DGs) are integrated into power systems to meet energy demand and improve voltage stability. In this study, the IEEE 30 bus power system and the North-west Anatolia (KBA) power system are investigated in base (nominal), overload, and line outage cases regarding voltage stability. Static Var Compensator (SVC) and Thyristor Controlled Series Capacitor (TCSC) from FACTS devices, Fuel Cell (YH), Solar Power Plant (GES), and Wind Power Plant (RES) from DGs are connected separately and together in the power systems. Changes in bus voltage values and loading parameters of power systems are analyzed.

Kaynakça

  • 1. Nafeh A.A., Heikal A., El-Sehiemy R.A., Salem W.A.A., Intelligent fuzzy-based controllers for voltage stability enhancement of AC-DC micro-grid with D-STATCOM, Alexandria Engineering Journal, 61 (3), 2260-2293, 2022.
  • 2. Lin Y., Zhang X., Wang J., Shi D., Bian D., Voltage Stability Constrained Optimal Power Flow for Unbalanced Distribution System Based on Semidefinite Programming, Journal of Modern Power Systems and Clean Energy, 10 (6), 1614-1624, 2022.
  • 3. Amroune M., Machine Learning Techniques Applied to On-Line Voltage Stability Assessment: A Review, Archives of Computational Methods in Engineering, 28 (2), 273-287, 2021.
  • 4. Adebayo I.G., Sun Y., Performance Evaluation of Voltage Stability Indices for a Static Voltage Collapse Prediction, 2020 IEEE PES/IAS PowerAfrica, Nairobi-Kenya, 1-5, 25-28 August, 2020.
  • 5. Liu H., Su J., Yang Y., Qin Z., Li C., Compatible Decentralized Control of AVR and PSS for Improving Power System Stability, IEEE Syst J, 15 (2), 2410-2419, 2021.
  • 6. Nahid-Al-Masood, Shazon M.N.H., Deeba S.R., Modak S.R., A Frequency and Voltage Stability-Based Load Shedding Technique for Low Inertia Power Systems, IEEE Access, 9, 78947-78961, 2021.
  • 7. Bakir H., Kulaksiz A.A., Modelling and voltage control of the solar-wind hybrid micro-grid with optimized STATCOM using GA and BFA, Engineering Science and Technology, an International Journal, 23 (3), 576-584, 2020.
  • 8. Sriram C., Kishore M.N.R., Teaching Distance Relay Protection and Circuit Breaker Co-ordination of an IEEE 9 Bus System Using MATLAB/SIMULINK, Lecture Notes in Electrical Engineering, 626, 439-447, 2020.
  • 9. Essallah S., Bouallegue A., Khedher A., Integration of automatic voltage regulator and power system stabilizer: small-signal stability in DFIG-based wind farms, Journal of Modern Power Systems and Clean Energy, 7 (5), 1115-1128, 2019.
  • 10. Laghari J.A., Mokhlis H., Bakar A.H.A., Mohamad H., Application of computational intelligence techniques for load shedding in power systems: A review, Energy Convers Manag., 75, 130-140, 2013.
  • 11. El-Ela A.A.A., El-Sehiemy R.A., Abbas A.S., Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm, IEEE Syst J., 12 (4), 3629-3636, 2018.
  • 12. Roshan R., Samal P., Sinha P., Optimal placement of FACTS devices in power transmission network using power stability index and fast voltage stability index, 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur-India, 246-251, 14-15 February, 2020.
  • 13. Kamarposhti M.A., Lesani H., Effects of STATCOM, TCSC, SSSC and UPFC on static voltage stability, Electrical Engineering, 93 (1), 33-42, 2011.
  • 14. Oukennou A., Sandali A., Assessment and analysis of Voltage Stability Indices in electrical network using PSAT Software, 18th International Middle-East Power Systems Conference (MEPCON), Cairo-Egypt, 705-710, 27-29 December, 2016.
  • 15. Hu S., Xiang Y., Zhang X., Liu J., Wang R., Hong B., Reactive power operability of distributed energy resources for voltage stability of distribution networks, Journal of Modern Power Systems and Clean Energy, 7 (4), 851-861, 2019.
  • 16. Duong M.Q., Pham T.D., Nguyen T.T., Doan A.T., van Tran H., Determination of optimal location and sizing of solar photovoltaic distribution generation units in radial distribution systems, Energies, 12 (1), 1-24, 2019.
  • 17. AL Rhia R., Daghrour H., Alsamara M., Optimal Location of Distributed Generation and its Impacts on Voltage Stability, 12th International Renewable Engineering Conference (IREC), Amman-Jordan, 6-11, 14-15 April, 2021.
  • 18. Essallah S., Khedher A., Bouallegue A., Integration of distributed generation in electrical grid: Optimal placement and sizing under different load conditions, Computers and Electrical Engineering, 79, 1-14, 2019. 19. Tostado M., Kamel S., Jurado F., Developed Newton-Raphson based Predictor-Corrector load flow approach with high convergence rate, International Journal of Electrical Power and Energy Systems, 105, 785-792, 2019.
  • 20. Abokrisha M., Diaa A., Selim A., Kamel S., Development of Newton-raphson power-flow method based on second order multiplier, 19th International Middle-East Power Systems Conference (MEPCON), Cairo-Egypt, 976-980, 19-21 December, 2017.
  • 21. Yetkin E.F., Assesment of soft error sensitivity of power flow analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 579-589, 2023.
  • 22. Grisales-Noreña L.F, Morales-Duran J.C., Velez-Garcia S., Montoya O.D., Gil-González W., Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations, Results in Engineering, 17, 1-9, 2023.
  • 23. Kumar S., Kumar A., Sharma N.K., Analysis of power flow, continuous power flow and transient stability of IEEE-14 bus integrated wind farm using PSAT, 2015 International Conference on Energy Economics and Environment (ICEEE), Greater Noida-India, 10-15, 27-28 March, 2015.
  • 24. Kundur P., Power System Stability and Control. McGraw-Hill, New York, USA, 1994.
  • 25. Dong X., Wang C., Yun Z., et al, Calculation of optimal load margin based on improved continuation power flow model, International Journal of Electrical Power and Energy Systems, 94, 225-233, 2018.
  • 26. Salama H.S., Vokony I., Voltage stability indices–A comparison and a review. Computers and Electrical Engineering, 98, 1-26, 2022.
  • 27. Sahari S., Abidin A.F., Rahman T.K.A., Development of artificial neural network for voltage stability monitoring, 2003 National Power Engineering Conference (PECon), Bangi-Malaysia, 37-42, 15-16 December, 2003.
  • 28. AL Ahmad A., Sirjani R., Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review, Ain Shams Engineering Journal, 11 (3), 611-628, 2020.
  • 29. Zhang X.P., Rehtanz C., Pal B., Flexible AC Transmission Systems: Modelling and Control, Springer, Berlin, Germany, 2012.
  • 30. Muisyo I.N., Kaberere K.K., Utilization of FACTS devices in power systems: A review. In: Proceedings of Sustainable Research and Innovation Conference, 1-7, 2018.
  • 31. Ertay M.M., Aydoğmuş Z., Güç sistemlerinde FACTS uygulamaları, SDU International Journal of Technologic Sciences, 40 (2), 40-58, 2012.
  • 32. Sharma A.K., Mittapalli R.K., Pal Y., FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets. Journal of The Institution of Engineers (India): Series B, 97 (3), 339-354, 2016.
  • 33. Acharya N., Sode-Yome A., Mithulananthan N., Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits, Australian Universities Power Engineering Conference (AUPEC), 1-7, 2005.
  • 34. Le V.D., Li X., Li P., Le C.Q., A novel approach for determining optimal number and placement of static var compensator device to enhance the dynamic performance in power systems, Electrical Engineering, 100 (3), 1517-1533, 2018.
  • 35. Eltamaly A.M., El-Sayed A.H.M., Mohamed Y.S., Elghaffar A.N.A., A modified techniques of transmission system by static var compensation (SVC) for voltage control, 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama-Bahrain, 1-5, 15-17 April, 2019.
  • 36. Kamel S., Abokrisha M., Selim A., Jurado F., Power flow control of power systems based on a simple TCSC model, Ain Shams Engineering Journal, 12 (3), 2781-2788, 2021.
  • 37. Sayed F., Kamel S., Taher M.A., Jurado F., Enhancing power system loadability and optimal load shedding based on TCSC allocation using improved moth flame optimization algorithm, Electrical Engineering, 103 (1), 205-225, 2021.
  • 38. Worighi I., Maach A., Hafid A., Hegazy O., van Mierlo J., Integrating renewable energy in smart grid system: Architecture, virtualization and analysis, Sustainable Energy, Grids and Networks, 18, 1-13, 2019.
  • 39. Kumar G.B.A., Shivashankar, Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system, International Journal of Energy and Environmental Engineering, 13 (1), 77-103, 2022.
  • 40. García D., Luis J., Modeling and Control of Squirrel Cage Induction Generator with Full Power Converter Applied to Windmills, e-report, Oulun Yliopisto University of Oulu, Finland, 2009.
  • 41. Hiremath R., Moger T., Comprehensive review on low voltage ride through capability of wind turbine generators, International Transactions on Electrical Energy Systems, 30 (10), 1-39, 2020.
  • 42. Abd Aziz A.J., Baharuddin N.A., Somalu M.R., Muchtar A., Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications, Ceram Int., 46 (15), 23314-23325, 2020.
  • 43. Singh M., Zappa D., Comini E., Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int J Hydrogen Energy, 46 (54), 27643-27674, 2021.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Umut Emre Uzun 0000-0002-6209-2962

Nihat Pamuk 0000-0001-8980-6913

Sezai Taskın 0000-0002-2763-1625

Erken Görünüm Tarihi 20 Mayıs 2024
Yayımlanma Tarihi
Gönderilme Tarihi 11 Nisan 2023
Kabul Tarihi 14 Mart 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Uzun, U. E., Pamuk, N., & Taskın, S. (2024). Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 313-330. https://doi.org/10.17341/gazimmfd.1280971
AMA Uzun UE, Pamuk N, Taskın S. Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi. GUMMFD. Mayıs 2024;40(1):313-330. doi:10.17341/gazimmfd.1280971
Chicago Uzun, Umut Emre, Nihat Pamuk, ve Sezai Taskın. “Güç Sistemlerinde FACTS Cihazları Ve dağıtık üretim Kaynakları kullanılarak Gerilim kararlılığının Ve yükleme Kapasitesinin iyileştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Mayıs 2024): 313-30. https://doi.org/10.17341/gazimmfd.1280971.
EndNote Uzun UE, Pamuk N, Taskın S (01 Mayıs 2024) Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 313–330.
IEEE U. E. Uzun, N. Pamuk, ve S. Taskın, “Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi”, GUMMFD, c. 40, sy. 1, ss. 313–330, 2024, doi: 10.17341/gazimmfd.1280971.
ISNAD Uzun, Umut Emre vd. “Güç Sistemlerinde FACTS Cihazları Ve dağıtık üretim Kaynakları kullanılarak Gerilim kararlılığının Ve yükleme Kapasitesinin iyileştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Mayıs 2024), 313-330. https://doi.org/10.17341/gazimmfd.1280971.
JAMA Uzun UE, Pamuk N, Taskın S. Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi. GUMMFD. 2024;40:313–330.
MLA Uzun, Umut Emre vd. “Güç Sistemlerinde FACTS Cihazları Ve dağıtık üretim Kaynakları kullanılarak Gerilim kararlılığının Ve yükleme Kapasitesinin iyileştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 313-30, doi:10.17341/gazimmfd.1280971.
Vancouver Uzun UE, Pamuk N, Taskın S. Güç sistemlerinde FACTS cihazları ve dağıtık üretim kaynakları kullanılarak gerilim kararlılığının ve yükleme kapasitesinin iyileştirilmesi. GUMMFD. 2024;40(1):313-30.