Yüzer temelli açık deniz rüzgâr santralleri için ÇKKV yöntemleriyle uygun liman seçimi vaka analizi: Türkiye örneği
Yıl 2025,
Cilt: 40 Sayı: 1, 639 - 652, 16.08.2024
Ayşe Nuray Canat
,
Coşkun Özkan
Öz
Yenilenebilir enerji dallarından biri olan açık deniz rüzgâr santrallerinin optimum hizmet verebilmesi, düşük maliyetli ve yüksek faydalı olması için kurulum, işletim ve bakım aşamalarının enerji santraline yakın bir lokasyonda uygun limanda yapılması gerekmektedir. Bu liman seçimi işleminde, kurulumu sağlanacak türbin yapısına göre limanların sahip olması gereken kriterler farklılaşmaktadır. Literatürde yüzer temelli rüzgâr türbinleri için liman yeri seçimine ilişkin yapılmış herhangi bir çalışma bulunmamaktadır. Bu çalışmada, yüzer temelli rüzgâr türbinlerinin denizdeki yaşam döngüleri için limanların sahip olması gereken özellikler literatürdeki çalışmalar incelenerek elde edilmiştir. Uygun limanların seçimi için Tam Tutarlılık Yöntemi (FUCOM- FUll COnsistency Method), En İyi- En Kötü Yöntemi (BWM- Best Worst Method), Ortak Ağırlıklandırma Yöntemi ve Alternatiflerin İdeal Çözüme Olan Uzaklıklarına Göre Uzlaşma Sıralaması yaklaşımı (CRADIS- Compromise Ranking of Alternatives from Distance to Ideal Solution) kullanılarak karar verme sürecine katkıda bulunulmuştur. Diğer ÇKKV (Çok kriterli karar verme) yöntemleri ile karşılaştırmalı analiz yapılarak uygun liman seçiminin yapılması sağlanmıştır. Çalışmada, liman özelliklerinin en az asgari düzeyde sağlanması gerektiği için Türkiye’deki konteyner ve Ro-Ro limanlar kullanılmıştır. Çalışmada Karadeniz bölgesinde bulunan Samsunport her üç liman tipi (terminal, servis ve yanıt) için en uygun liman olduğu bulunmuştur. Bileşen üretim tesisine sahip olması kriteri yüzer temelli açık deniz enerji santrali terminal liman seçimi için en önemli kriter olarak bulunmuştur.
Destekleyen Kurum
Yükseköğretim Kurulu (YÖK) 100/2000 Doktora Bursu
Kaynakça
- 1. Global Wind Energy Council. Global Offshore Wind Report 2022. https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf. Yayın tarihi Haziran 29,2022. Erişim tarihi Ekim 20, 2023.
- 2. Irawan C. A., Song X., Jones D., Akbari N., Layout optimisation for an installation port of an offshore wind farm, Eur. J. Oper. Res., 259 (1), 67–83, 2017.
- 3. T.C. Enerji ve Tabii Kaynaklar Bakanlığı.Türkiye Ulusal Enerji̇ Planı. https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/ TUEP/T%C3%BCrkiye_Ulusal_Enerji_Plan%C4%B1.pdf . Yayın tarihi 2022. Erişim tarihi Ağustos 25, 2023.
- 4. Akbari N., Irawan C. A., Jones D. F., Menachof D., A multi-criteria port suitability assessment for developments in the offshore wind industry, Renew. Energy, 102, 118–133, 2017.
- 5. Irawan C. A., Akbari N., Jones D. F., Menachof D., A combined supply chain optimisation model for the installation phase of offshore wind projects, Int. J. Prod. Res., 56 (3), 1189–1207, 2018.
- 6. Öztürk S., Karipoğlu F., Determining suitable container ports for offshore wind farms based on geographical information system-analytic hierarchy process: a case study of Marmara Sea, Arab. J. Geosci.,15 (1), 2022.
- 7. Jäppelt U., Carstensen N., Schnabel F., Hafenkonzepte für die Offshore-Windindustrie: Anforderungen an Offshore-Häfen, Beton- und Stahlbetonbau, 107 (1), 33–38, 2012.
- 8. Crowle A. P., Thies P. R., Floating offshore wind turbines port requirements for construction, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 236 (4), 1047–1056, 2022.
- 9. Pamučar D., Stević Ž., Sremac S., A new model for determiningweight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM), Symmetry (Basel), 10 (9), 2018.
- 10. Gölcük İ., Durmaz E. D.,Şahin R., Prioritizing occupational safety risks with fuzzy FUCOM and fuzzy graph theory-matrix approach, Journal of the Faculty Engineering and Architecture of Gazi University., 38 (1), 57–69, 2023.
- 11. Ecer F., An analysis of the factors affecting wind farm site selection through FUCOM subjective weighting method, Pamukkale Univ. J. Eng. Sci., 27 (1), 24–34, 2021.
- 12. Tulun Ş., Arsu T.,Gürbüz E., Selection of the most suitable biogas facility location with the geographical information system and multi-criteria decision-making methods: a case study of Konya Closed Basin, Turkey, Biomass Convers. Biorefinery, 13 (4), 3439–3461, 2023.
- 13. Khan A., Ali Y., Pamucar D., Solar PV power plant site selection using a GIS-based non-linear multi-criteria optimization technique, Environ. Sci. Pollut. Res., 30 (20), 57378–57397, 2023.
- 14. Cao Q., Esangbedo M. O., Bai S., Esangbedo C. O., Grey SWARA-FUCOM weighting method for contractor selection MCDM problem: A case study of floating solar panel energy system installation, Energies, 12 (13), 2019.
- 15. Deveci M., Pamucar D., Cali U., Kantar E., Kolle K.,Tande J. O., Hybrid q-Rung Orthopair Fuzzy Sets Based CoCoSo Model for Floating Offshore Wind Farm Site Selection in Norway, CSEE J. Power Energy Syst., 8 (5), 1261–1280, 2022.
- 16. Akbari M. et al., Identification of the Groundwater Potential Recharge Zones Using MCDM Models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP), Water Resour. Manag., 35 (14), 4727–4745, 2021.
- 17. Boz E., Çizmecioğlu S.,Çalık A., Air cargo company selection under a state of chaos: An integrated bayesian BWM and WASPAS approach, Journal of the Faculty Engineering and Architecture of Gazi University, 38 (3), 1589–1600, 2023.
- 18. Agyekum E. B. et al., Decarbonize Russia - A Best–Worst Method approach for assessing the renewable energy potentials, opportunities and challenges, Energy Reports, 7, 4498-4515, 2021.
- 19. Badi I., Pamučar D., Stević Ž., Muhammad L. J., Wind farm site selection using BWM-AHP-MARCOS method: A case study of Libya, Sci. African, 19, 01511, 2023.
- 20. Hadi Mousavi-Nasab S. Sotoudeh-Anvari A., An extension of best-worst method with D numbers: Application in evaluation of renewable energy resources, Sustain. Energy Technol. Assessments, 40, 100771, 2020.
- 21. Majumder P., Balas V. E., Paul A., Baidya D., Application of improved fuzzy best worst analytic hierarchy process on renewable energy, PeerJ Comput. Sci., 7, 1–27, 2021.
- 22. Shayani Mehr P., Hafezalkotob A., Fardi K., Seiti H., Movahedi Sobhani F., Hafezalkotob A., A comprehensive framework for solar panel technology selection: A BWM- MULTIMOOSRAL approach, Energy Sci. Eng., 4595–4625, 2022.
- 23. Rezaei J., Best-worst multi-criteria decision-making method, Omega (United Kingdom), 53, 49–57, 2015.
- 24. Zavadskas E. K., Podvezko V., Integrated determination of objective criteria weights in MCDM, Int. J. Inf. Technol. Decis. Mak., 15 (2), 267–283, 2016.
- 25. Puška A., Stević Ž.,Pamučar D., Evaluation and selection of healthcare waste incinerators using extended sustainability criteria and multi-criteria analysis methods, 24 (9), 2022.
- 26. Aytekin A., Energy, Environment, and Sustainability: A Multi-criteria Evaluation of Countries, Strateg. Plan. Energy Environ., 41 (3), 281–316, 2022.
- 27. Yazdani M., Zarate P., Zavadskas E. K., Turskis Z., A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems, Manag. Decis., 57 (9), 2501–2519, 2019.
- 28. Bouraima M. B., Ayyıldız E., Badi I., Özçelik G., Yeni F. B., Pamucar D., An integrated intelligent decision support framework for the development of photovoltaic solar power, Eng. Appl. Artif. Intell., 27, 2023.
- 29. Hosseini Dehshiri S. J.,Amiri M., Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach, Energy, 285, 129493, 2023.
- 30. Yu Y., Wu S., Yu J., Xu Y., Song L., Xu W., A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China, Appl. Energy, 328, 2022.
- 31. Jäppelt U., Carstensen N., Schnabel F., Hafenkonzepte für die Offshore-Windindustrie: Anforderungen an Offshore-Häfen, Beton- und Stahlbetonbau, 107 (1), 33–38, 2012.
- 32. World Bank. Offshore Wind Technical Potential in Turkey. https://documents1.worldbank.org/curated/en/694551586852099074/pdf/Technical-Potential-for-Offshore-Wind-in-Turkey-Map.pdf Yayın tarihi Mart 2020. Erişim tarihi Aralık 2023
- 33. Kabak M. and Akalın S., A model proposal for selecting the installation location of offshore wind energy turbines, Int. J. Energy Environ. Eng., 13 (1), 121–134, 2022.
- 34. Caceoğlu E., Yildiz H. K., Oğuz E., Huvaj N., Guerrero J. M., Offshore wind power plant site selection using Analytical Hierarchy Process for Northwest Turkey, Ocean Eng., 252, 2022.
- 35. Cali U., Erdogan N., Kucuksari S.,Argin M., Techno-Economic analysis of high potential offshore wind farm locations in Turkey, Energy Strateg. Rev., 22, 325–336, 2018.
- 36. Dalgic Y., Lazakis I., Dinwoodie I., McMillan D., Revie M., Advanced logistics planning for offshore wind farm operation and maintenance activities, Ocean Eng., 101, 211–226, 2015.
- 37. Tüsiad. Turklim Limancılık Sektoru 2022 Raporu. https://www.turklim.org/sektor-raporu-2022/ Yayın tarihi 2022 Erişim Tarihi Eylül 10, 2023.
- 38. Pakenham B., Ermakova A., Mehmanparast A., A Review of Life Extension Strategies for Offshore Wind Farms Using Techno-Economic Assessments,Energies,14, 1936, 2021.
- 39. Aktaş K., Adnan R., Karem A., Özbahçeci B. Ö., Platformların Hidrodinamik Modellenmesi, 9. Kıyı Mühendisliği Sempozyumu,Adana, 788–801, 2018.
- 40. Çalışkan M., Türkiye Rüzgâr Enerjisi Potansiyeli, EİGM Yenilenebilir Enerji Kaynakları Şubesi Raporu, 1–25, 2018.
- 41. Global Wind Energy Council. Global Wind Report 2021. https://gwec.net/wp-content/uploads/2021/03/GWEC-Global-Wind-Report-2021.pdf Yayın tarihi Mart 25,2021. Erişim tarihi Eylül 20,2023.
- 42. National Renewable Energy Laboratory. 2019 Cost of Wind Energy Review. https://www.nrel.gov/docs/fy21osti/78471.pdf Yayın tarihi Aralık, 2020. Erişim tarihi Eylül 3, 2023.