Araştırma Makalesi
BibTex RIS Kaynak Göster

Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu

Yıl 2025, Cilt: 40 Sayı: 2, 789 - 800
https://doi.org/10.17341/gazimmfd.1408888

Öz

Geri dönüştürülmüş karbon siyahı (RKS), geleneksel karbon siyahına (GKS) kıyasla daha düşük yüzey alanına ve daha yüksek kül içeriğine sahiptir. Bu sebeple, RKS'nin doğal kauçuk (NR) karışımındaki dispersiyonu GKS'ye göre daha zor olabilir. Ancak, RKS'nin GKS'ye göre daha zor disperse olması nedeniyle, hamurda RKS'nin GKS'ye göre dispersiyonu daha zorlu bir süreçtir ve bu süreç, karıştırma süresine daha fazla bağımlılık gösterir. Bu çalışma, RKS ile takviye edilmiş vulkanize NR karışım numunelerinin yorulma çatlak ilerleme hızını, GKS ile takviye edilmiş vulkanize NR karışım numunelerinin yorulma çatlak ilerleme hızıyla karşılaştırmaktadır. RKS ile takviye edilmiş NR'nin yorulma çatlak ilerleme hızının GKS ile takviye edilmiş NR'a kıyasla daha yüksek olduğu gözlemlenmiştir. Her iki karışım modeli için yorulma çatlak ilerleme hızı ve gerinme enerjisi arasındaki ilişki modellenmiş olup, analizler ve çıkan sonuçlar tasarımcıların hasar toleransını dikkate alarak döngüsel ekonomi kavramına uygun alternatif kauçuk karışımları seçmelerine olanak tanır.

Teşekkür

Angst Pfister Gelişmiş Teknik Çözümler Firması’nda yürütülen çekme ve yorulma çatlak ilerlemesi deneylerindeki yardımlarından dolayı Arda Gürarda’ya teşekkür ederiz.

Kaynakça

  • 1. Donnet J. B., Custodero E., Reinforcement of Elastomers by Particulate Fillers, The Science and Technology of Rubber, Elsevier Inc., 383-416, 2013.
  • 2. Bokobza L., Natural rubber nanocomposites: A review, Nanomaterials, 9 (1), 1-12, 2019.
  • 3. Robertson C. G., Hardman N. J., Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite, Polymers, 13 (4), 1-28, 2021.
  • 4. Limper A. (Andreas), Mixing of rubber compounds, Hanser Publishers, 2012.
  • 5. Global Precipitated Silica Market Overview, Jul. 2019, https://industry-experts.com/verticals/chemicals-and-materials/precipitated-silica-a-global-market-overview (Erişim Tarihi: 29 Mar. 2023).
  • 6. Fumed silica market-growth, trends, Covid-19 impact, and forecasts (2023-2028), https://www.mordorintelligence.com/industry-reports/fumed-silica-market. Erişim Tarihi 29 Mar. 2023.
  • 7. Robertson C. G., Hardman N. J., Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite, Polymers, 13 (4), 1-28, 2021.
  • 8. Farida E., Bukit N., Ginting E. M., Bukit B. F., The effect of carbon black composition in natural rubber compound, Case Studies in Thermal Engineering, 16, 2019.
  • 9. Kim J. H., Jeong H. Y., A study on the material properties and fatigue life of natural rubber with different carbon blacks, International Journal of Fatigue, 27 (3), 263-272, 2005.
  • 10. Omnès B., Thuillier S., Pilvin P., Grohens Y., Gillet S., Effective properties of carbon black filled natural rubber: Experiments and modeling, Composites Part A: Applied Science and Manufacturing, 39 (7), 1141-1149, 2008.
  • 11. Kenneth Sing,The use of nitrogen adsorption for the characterisation of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 3-9, 2001.
  • 12. Donnet J.-B., Bansal R. C., Wang M.-J., Carbon black: science and technology, Dekker, 1993.
  • 13. Dwivedi C., Manjare S., Rajan S. K., Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds, Composites Part B: Engineering, 200, 2020.
  • 14. ASTM Standard D1765-22 Standard Classification System for Carbon Blacks Used in Rubber Products, 2022.
  • 15. Sridharan H., Chanda J., Ghosh P., Mukhopadhyay R., Mixing time influence on fatigue crack growth in a carbon black-filled natural rubber vulcanizate, Progress in Rubber, Plastics and Recycling Technology, 36 (2), 115-130, 2020.
  • 16. Chittella H., Yoon L. W., Ramarad S., Lai Z. W., Rubber waste management: A review on methods, mechanism, and prospects, Polymer Degradation and Stability, 194, 2021.
  • 17. Williams P. T., Pyrolysis of waste tyres: A review, Waste Management, 33 (8), 1714-1728, 2013.
  • 18. Costa S. M. R., Fowler D., Carreira G. A., Portugal I., Silva C. M., Production and Upgrading of Recycled Carbon Black from the Pyrolysis of End‐of‐Life Tires, Materials, 15 (6), 2022.
  • 19. Balbay S., Effects of recycled carbon-based materials on tyre, Journal of Material Cycles and Waste Management, 22 (6), 1768-1779, 2020.
  • 20. Bijina V., Jandas P. J., Joseph S., Gopu J., Abhitha K., John H., Recent trends in industrial and academic developments of green tyre technology, Polymer Bulletin, 80 (8), 8215-8244, 2023.
  • 21. Jovičić M. et al., Effects of recycled carbon black generated from waste rubber on the curing process and properties of new natural rubber composites, Polymer Bulletin, 80 (5), 5047-5069, 2023.
  • 22. Pannikottu A., Service Life Prediction of Rubber Parts Used in Engineering Applications-Case Studies, 1997. 23. BS ISO 2230-2002 Rubber products-Guidelines for storage, 2002.
  • 24. Kaang S., Jin Y. W., Huh Y. il, Lee W. J., Im W. Bin, A test method to measure fatigue crack growth rate of rubbery materials, Polymer Testing, 25 (3), 347-352, 2006.
  • 25. Mars W., Fatemi A., A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, 24 (9), 949-961, 2002.
  • 26. Tee Y. L., Loo M. S., Andriyana A., Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004, International Journal of Fatigue, 110, 115-129, 2018.
  • 27. Choi I. S., Roland C. M., Intrinsic Defects and the Failure Properties of cis-1,4-Polyisoprenes, Rubber Chemistry and Technology, 69 (4), 591-599, 1996.
  • 28. Mars W. V., Fatemi A., Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading, Journal of Materials Science, 41 (22), 7324-7332, 2006.
  • 29. Hamed G. R., Al-Sheneper A. A., Effect of carbon black concentration on cut growth in NR vulcanizates, 2003. 30. Rivlin R. S., Thomas A. G., Rupture of Rubber. I. Characteristic Energy for Tearing, 1953.
  • 31. Gent A. N., Lindley P. B., Thomas A. G., Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue, Journal of Applied Polymer Science, 8 (1), 455-466, 1964.
  • 32. BS ISO 27727:2008 Rubber, vulcanized— Measurement of fatigue crack growth rate, 2008.
  • 33. Omsk Carbon Group Carbon Black Safety Data Sheet, https://en.omskcarbongroup.com/docs/safety/en/doc1.pdf (Erişim Tarihi: 05 Apr. 2024).
  • 34. STERLING® SO carbon black Product Data Sheet, https://www.cabotcorp.com/~/media/product-documents/datasheets/datasheet-sterling-sopdf.pdf. Erişim Tarihi: 05 Apr. 2024.
  • 35. ASTM Standard D1506-15 Standard Test Methods for Carbon Black-Ash Content 1, 2015.
  • 36. ASTM Standard D1510-21 Standard Test Method for Carbon Black-Iodine Adsorption Number 1, 2021.
  • 37. ASTM Standard D1512-21 Standard Test Methods for Carbon Black-pH Value, 2021.
  • 38. ASTM Standard D6556-21 Standard Test Method for Carbon Black-Total and External Surface Area by Nitrogen Adsorption 1, 2021.
  • 39. BS ISO 2393-2014 Rubber test mixes-Preparation, mixing and vulcanization-Equipment and procedures, 2015.
  • 40. Grunert F., Analytical method development to predict in-rubber dispersibility of silica, 2018, https://ris.utwente.nl/ws/portalfiles/portal/77145418/PhD_Thesis_Grunert.pdf. Erişim Tarihi: 05 Apr. 2024.
  • 41. BS ISO 6502-1:2018 Rubber-Measurement of vulcanization characteristics using curemeters, 2020.
  • 42. ASTM Standard D2240−15 Standard Test Method for Rubber Property-Durometer Hardness, 2015.
  • 43. Klie B., Teich S., Haberstroh E., Giese U., New Method for Evaluating Rubber Mixing Quality by means of alternative Representation of the Fingerprint Chart, 2015, www.kgk-rubberpoint.de.
  • 44. BS ISO 11345:2006 Rubber-Assessment of carbon black and carbon black/silica dispersion-Rapid comparative methods, 2006.
  • 45. Dannenberg E. M., Carbon black dispersion and reinforcement, 1952.
  • 46. Mullins L., Softening of rubber by deformation, 1969.
  • 47. Dusunceli N., Drozdov A. D., Fading memory of deformation history in carbon black-filled thermoplastic elastomers, Polymer Testing, 58, 1-12, 2017.
  • 48. Tsunoda K., The Role of Visco-elasticity on the Crack Growth Behaviour of Rubber, 2001.
  • 49. Wang M.-J., Morris M., Rubber Reinforcement with Particulate Fillers, 2021.
  • Tunnicliffe L. B., Fatigue crack growth behavior of carbon black-reinforced natural rubber, Rubber Chemistry and Technology, 94 (3), 494-514, 2021.

Fatigue crack growth characterization of the recycled carbon black reinforced natural rubber mixes

Yıl 2025, Cilt: 40 Sayı: 2, 789 - 800
https://doi.org/10.17341/gazimmfd.1408888

Öz

Recovered carbon black (rCB) typically has a lower surface area and higher ash content compared to virgin carbon black (vCB). Consequently, the dispersion of rCBS in natural rubber (NR) can be challenging compared with vCB. As a result, the incorporation of rCB into the compound proves to be a more demanding process than vCB, exhibiting a greater dependency on mixing time. Process parameters were studied to understand the dominant impacts on the endurance performance. This study compares the fatigue crack growth rate of vulcanized NR mixtures reinforced with rCB and vCB. It has been observed that the fatigue crack growth rate in NR reinforced with rCB is higher compared with vCB. The relationship between fatigue crack growth rate and strain energy has been modeled for both mixture types, allowing designers to select alternative rubber mixtures suitable for circular economy concepts while considering damage tolerance.

Kaynakça

  • 1. Donnet J. B., Custodero E., Reinforcement of Elastomers by Particulate Fillers, The Science and Technology of Rubber, Elsevier Inc., 383-416, 2013.
  • 2. Bokobza L., Natural rubber nanocomposites: A review, Nanomaterials, 9 (1), 1-12, 2019.
  • 3. Robertson C. G., Hardman N. J., Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite, Polymers, 13 (4), 1-28, 2021.
  • 4. Limper A. (Andreas), Mixing of rubber compounds, Hanser Publishers, 2012.
  • 5. Global Precipitated Silica Market Overview, Jul. 2019, https://industry-experts.com/verticals/chemicals-and-materials/precipitated-silica-a-global-market-overview (Erişim Tarihi: 29 Mar. 2023).
  • 6. Fumed silica market-growth, trends, Covid-19 impact, and forecasts (2023-2028), https://www.mordorintelligence.com/industry-reports/fumed-silica-market. Erişim Tarihi 29 Mar. 2023.
  • 7. Robertson C. G., Hardman N. J., Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite, Polymers, 13 (4), 1-28, 2021.
  • 8. Farida E., Bukit N., Ginting E. M., Bukit B. F., The effect of carbon black composition in natural rubber compound, Case Studies in Thermal Engineering, 16, 2019.
  • 9. Kim J. H., Jeong H. Y., A study on the material properties and fatigue life of natural rubber with different carbon blacks, International Journal of Fatigue, 27 (3), 263-272, 2005.
  • 10. Omnès B., Thuillier S., Pilvin P., Grohens Y., Gillet S., Effective properties of carbon black filled natural rubber: Experiments and modeling, Composites Part A: Applied Science and Manufacturing, 39 (7), 1141-1149, 2008.
  • 11. Kenneth Sing,The use of nitrogen adsorption for the characterisation of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 3-9, 2001.
  • 12. Donnet J.-B., Bansal R. C., Wang M.-J., Carbon black: science and technology, Dekker, 1993.
  • 13. Dwivedi C., Manjare S., Rajan S. K., Recycling of waste tire by pyrolysis to recover carbon black: Alternative & environment-friendly reinforcing filler for natural rubber compounds, Composites Part B: Engineering, 200, 2020.
  • 14. ASTM Standard D1765-22 Standard Classification System for Carbon Blacks Used in Rubber Products, 2022.
  • 15. Sridharan H., Chanda J., Ghosh P., Mukhopadhyay R., Mixing time influence on fatigue crack growth in a carbon black-filled natural rubber vulcanizate, Progress in Rubber, Plastics and Recycling Technology, 36 (2), 115-130, 2020.
  • 16. Chittella H., Yoon L. W., Ramarad S., Lai Z. W., Rubber waste management: A review on methods, mechanism, and prospects, Polymer Degradation and Stability, 194, 2021.
  • 17. Williams P. T., Pyrolysis of waste tyres: A review, Waste Management, 33 (8), 1714-1728, 2013.
  • 18. Costa S. M. R., Fowler D., Carreira G. A., Portugal I., Silva C. M., Production and Upgrading of Recycled Carbon Black from the Pyrolysis of End‐of‐Life Tires, Materials, 15 (6), 2022.
  • 19. Balbay S., Effects of recycled carbon-based materials on tyre, Journal of Material Cycles and Waste Management, 22 (6), 1768-1779, 2020.
  • 20. Bijina V., Jandas P. J., Joseph S., Gopu J., Abhitha K., John H., Recent trends in industrial and academic developments of green tyre technology, Polymer Bulletin, 80 (8), 8215-8244, 2023.
  • 21. Jovičić M. et al., Effects of recycled carbon black generated from waste rubber on the curing process and properties of new natural rubber composites, Polymer Bulletin, 80 (5), 5047-5069, 2023.
  • 22. Pannikottu A., Service Life Prediction of Rubber Parts Used in Engineering Applications-Case Studies, 1997. 23. BS ISO 2230-2002 Rubber products-Guidelines for storage, 2002.
  • 24. Kaang S., Jin Y. W., Huh Y. il, Lee W. J., Im W. Bin, A test method to measure fatigue crack growth rate of rubbery materials, Polymer Testing, 25 (3), 347-352, 2006.
  • 25. Mars W., Fatemi A., A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, 24 (9), 949-961, 2002.
  • 26. Tee Y. L., Loo M. S., Andriyana A., Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004, International Journal of Fatigue, 110, 115-129, 2018.
  • 27. Choi I. S., Roland C. M., Intrinsic Defects and the Failure Properties of cis-1,4-Polyisoprenes, Rubber Chemistry and Technology, 69 (4), 591-599, 1996.
  • 28. Mars W. V., Fatemi A., Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading, Journal of Materials Science, 41 (22), 7324-7332, 2006.
  • 29. Hamed G. R., Al-Sheneper A. A., Effect of carbon black concentration on cut growth in NR vulcanizates, 2003. 30. Rivlin R. S., Thomas A. G., Rupture of Rubber. I. Characteristic Energy for Tearing, 1953.
  • 31. Gent A. N., Lindley P. B., Thomas A. G., Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue, Journal of Applied Polymer Science, 8 (1), 455-466, 1964.
  • 32. BS ISO 27727:2008 Rubber, vulcanized— Measurement of fatigue crack growth rate, 2008.
  • 33. Omsk Carbon Group Carbon Black Safety Data Sheet, https://en.omskcarbongroup.com/docs/safety/en/doc1.pdf (Erişim Tarihi: 05 Apr. 2024).
  • 34. STERLING® SO carbon black Product Data Sheet, https://www.cabotcorp.com/~/media/product-documents/datasheets/datasheet-sterling-sopdf.pdf. Erişim Tarihi: 05 Apr. 2024.
  • 35. ASTM Standard D1506-15 Standard Test Methods for Carbon Black-Ash Content 1, 2015.
  • 36. ASTM Standard D1510-21 Standard Test Method for Carbon Black-Iodine Adsorption Number 1, 2021.
  • 37. ASTM Standard D1512-21 Standard Test Methods for Carbon Black-pH Value, 2021.
  • 38. ASTM Standard D6556-21 Standard Test Method for Carbon Black-Total and External Surface Area by Nitrogen Adsorption 1, 2021.
  • 39. BS ISO 2393-2014 Rubber test mixes-Preparation, mixing and vulcanization-Equipment and procedures, 2015.
  • 40. Grunert F., Analytical method development to predict in-rubber dispersibility of silica, 2018, https://ris.utwente.nl/ws/portalfiles/portal/77145418/PhD_Thesis_Grunert.pdf. Erişim Tarihi: 05 Apr. 2024.
  • 41. BS ISO 6502-1:2018 Rubber-Measurement of vulcanization characteristics using curemeters, 2020.
  • 42. ASTM Standard D2240−15 Standard Test Method for Rubber Property-Durometer Hardness, 2015.
  • 43. Klie B., Teich S., Haberstroh E., Giese U., New Method for Evaluating Rubber Mixing Quality by means of alternative Representation of the Fingerprint Chart, 2015, www.kgk-rubberpoint.de.
  • 44. BS ISO 11345:2006 Rubber-Assessment of carbon black and carbon black/silica dispersion-Rapid comparative methods, 2006.
  • 45. Dannenberg E. M., Carbon black dispersion and reinforcement, 1952.
  • 46. Mullins L., Softening of rubber by deformation, 1969.
  • 47. Dusunceli N., Drozdov A. D., Fading memory of deformation history in carbon black-filled thermoplastic elastomers, Polymer Testing, 58, 1-12, 2017.
  • 48. Tsunoda K., The Role of Visco-elasticity on the Crack Growth Behaviour of Rubber, 2001.
  • 49. Wang M.-J., Morris M., Rubber Reinforcement with Particulate Fillers, 2021.
  • Tunnicliffe L. B., Fatigue crack growth behavior of carbon black-reinforced natural rubber, Rubber Chemistry and Technology, 94 (3), 494-514, 2021.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Malzeme Tasarım ve Davranışları, Polimerler ve Plastikler
Bölüm Makaleler
Yazarlar

Onur Haydari 0009-0004-9877-2064

Emrecan Söylemez 0000-0003-4827-2606

Erken Görünüm Tarihi 6 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 23 Aralık 2023
Kabul Tarihi 16 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Haydari, O., & Söylemez, E. (2024). Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(2), 789-800. https://doi.org/10.17341/gazimmfd.1408888
AMA Haydari O, Söylemez E. Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu. GUMMFD. Kasım 2024;40(2):789-800. doi:10.17341/gazimmfd.1408888
Chicago Haydari, Onur, ve Emrecan Söylemez. “Geri dönüştürülmüş Karbon Siyahı Takviyeli doğal kauçuk karışımlarında Yorulma çatlak Ilerlemesi Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 2 (Kasım 2024): 789-800. https://doi.org/10.17341/gazimmfd.1408888.
EndNote Haydari O, Söylemez E (01 Kasım 2024) Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 2 789–800.
IEEE O. Haydari ve E. Söylemez, “Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu”, GUMMFD, c. 40, sy. 2, ss. 789–800, 2024, doi: 10.17341/gazimmfd.1408888.
ISNAD Haydari, Onur - Söylemez, Emrecan. “Geri dönüştürülmüş Karbon Siyahı Takviyeli doğal kauçuk karışımlarında Yorulma çatlak Ilerlemesi Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/2 (Kasım 2024), 789-800. https://doi.org/10.17341/gazimmfd.1408888.
JAMA Haydari O, Söylemez E. Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu. GUMMFD. 2024;40:789–800.
MLA Haydari, Onur ve Emrecan Söylemez. “Geri dönüştürülmüş Karbon Siyahı Takviyeli doğal kauçuk karışımlarında Yorulma çatlak Ilerlemesi Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 2, 2024, ss. 789-00, doi:10.17341/gazimmfd.1408888.
Vancouver Haydari O, Söylemez E. Geri dönüştürülmüş karbon siyahı takviyeli doğal kauçuk karışımlarında yorulma çatlak ilerlemesi karakterizasyonu. GUMMFD. 2024;40(2):789-800.