Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi

Yıl 2025, Cilt: 40 Sayı: 2, 1259 - 1270
https://doi.org/10.17341/gazimmfd.1540598

Öz

Bu çalışma, çift yakıtlı bir dizel motorda ikincil yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkilerini araştırmaktadır. Deneyler, çeşitli yükler (%0, %25, %50, %75 ve %100) altında sabit 1800 d/d motor hızında çalışan bir dizel motor kullanılarak gerçekleştirilmiştir. Standart dizel yakıt enjeksiyon sistemine ek olarak, etil asetat emme manifolduna 1 ms, 2 ms ve 3 ms'lik değişen enjeksiyon süreleriyle enjekte edilmiştir. Ölçülen parametreler arasında tork, özgül yakıt tüketimi (ÖYT), toplam enerji tüketimi (Etotal), egzoz sıcaklığı ve CO, HC, CO2, O2, NOx, Lambda, is ve emisyon ölçümleri yer almaktadır.
Tam yükteki test sonuçları, %100 dizel yakıtla yapılan temel ölçümlerle karşılaştırıldığında önemli değişiklikler ortaya koymuştur. Özellikle, 1 ms etil asetat enjeksiyonuyla, HC emisyonları %42,86, NOx emisyonları %1,88 ve duman emisyonları %72,45 oranında azalmıştır. 2 ms etil asetat enjeksiyonuyla, fren özgül yakıt tüketimi (ÖYT) %1,28 ve CO emisyonları %51,64 oranında azalmıştır. 3 ms etil asetat enjeksiyonuyla, toplam enerji tüketimi (Etotal) %12,67 oranında azalmıştır ve belirtilen ortalama efektif basınç (IMEP) %2,89 oranında artmıştır.
Bu bulgular, etil asetatın çift yakıtlı bir dizel motorda ikincil yakıt olarak kullanıldığında yanma verimliliğini önemli ölçüde artırabileceğini ve özellikle tam yük koşulları altında zararlı emisyonları azaltabileceğini göstermektedir. Çalışma, etil asetatın çift yakıtlı dizel motorlara dahil edilmesinin potansiyel faydalarına ilişkin değerli sonuçlar sunarak, bu yaklaşımın daha temiz ve daha verimli dizel motor çalışmasına yol açabileceğini ileri sürmektedir. Enjeksiyon stratejilerinin optimize edilmesi ve etil asetatın ikincil yakıt olarak kullanılmasının uzun vadeli etkilerinin araştırılması için daha fazla araştırma yapılması önerilmektedir.

Kaynakça

  • 1. Bharadwaj A., Evolution of the Global Automobile Industry, Prog Mater Sci, 1, 1–9, 2018.
  • 2. Yue Z., Liu H., Advanced Research on Internal Combustion Engines and Engine Fuels, Energies, 16, 5940, 2023.
  • 3. Pierce D., Haynes A., Hughes J., Graves R., Maziasz P., Muralidharan G., et al., High temperature materials for heavy duty diesel engines: Historical and future trends, Prog Mater Sci, 103, 109–179, 2019.
  • 4. Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E., Environmental and Health Impacts of Air Pollution: A Review, Front Public Health, 8, 505570, 2020.
  • 5. Peel J.L., Haeuber R., Garcia V., Russell A.G., Neas L., Impact of nitrogen and climate change interactions on ambient air pollution and human health, Biogeochemistry, 114, 121–134, 2013.
  • 6. Lloyd A.C., Cackette T.A., Diesel Engines: Environmental Impact and Control, J Air Waste Manag Assoc, 51, 809–847, 2001.
  • 7. Wagemakers A.M.L.M., Leermakers C.A.J., Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance, SAE Tech Pap, 2012.
  • 8. Monsalve-Serrano J., Belgiorno G., Di Blasio G., Guzmán-Mendoza M., 1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion, Energies, 13, 3734, 2020.
  • 9. Padala S., Woo C., Kook S., Hawkes E.R., Ethanol utilisation in a diesel engine using dual-fuelling technology, Fuel, 109, 597–607, 2013.
  • 10. Hegab A., La Rocca A., Shayler P., Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas, Renew Sustain Energy Rev, 70, 666–697, 2017.
  • 11. Jatoth R., Gugulothu S.K., Ravi kiran Sastry G., Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode, Energy, 225, 120218, 2021
  • 12. Wei L., Geng P., A review on natural gas/diesel dual fuel combustion, emissions and performance, Fuel Process Technol, 142, 264–278, 2016.
  • 13. Guido C., Alfè M., Gargiulo V., Napolitano P., Beatrice C., Del Giacomo N., Chemical/Physical Features of Particles Emitted from a Modern Automotive Dual-Fuel Methane-Diesel Engine, Energy Fuels, 32, 10154–10162, 2018.
  • 14. Dimitriou P., Tsujimura T., Kojima H., Aoyagi K., Kurimoto N., Nishijima Y., Experimental and Simulation Analysis of Natural Gas-Diesel Combustion in Dual-Fuel Engines, Front Mech Eng, 6, 543808, 2020.
  • 15. Cameretti M.C., De Robbio R., Mancaruso E., Palomba M., CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen, Energies, 15, 5521, 2022.
  • 16. Alimoradian B., Mockford I.J., A dual fuel system for converting automotive diesel engines for fuelling with natural gas, SAE Australasia, 48, 1988.
  • 17. Akbarian E., Najafi B., A novel fuel containing glycerol triacetate additive, biodiesel and diesel blends to improve dual-fuelled diesel engines performance and exhaust emissions, Fuel, 236, 666–676, 2019.
  • 18. Hashemi-Nejhad A., Najafi B., Ardabili S., Jafari G., Mosavi A., The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach, Int J Energy Res, 2023, 4630828.
  • 19. Khatri N., Khatri K.K., Hydrogen enrichment on diesel engine with biogas in dual fuel mode, Int J Hydrogen Energy, 45, 7128–7140, 2020.
  • 20. Kumar G., Kim S.H., Lay C.H., Ponnusamy V.K., Recent developments on alternative fuels, energy and environment for sustainability, Bioresour Technol, 317, 124010, 2020.
  • 21. Razak N.H., Hashim H., Yunus N.A., Klemeš J.J., Reducing diesel exhaust emissions by optimisation of alcohol oxygenates blend with diesel/biodiesel, J Clean Prod, 316, 128090, 2021.
  • 22. Chen H., Wang J., Shuai S., Chen W., Study of oxygenated biomass fuel blends on a diesel engine, Fuel, 87, 3462–3468, 2008.
  • 23. Elishav O., Mosevitzky Lis B., Miller E.M., Arent D.J., Valera-Medina A., Grinberg Dana A., et al., Progress and Prospective of Nitrogen-Based Alternative Fuels, Chem Rev, 120, 5352–5436, 2020.
  • 24. Nabi M.N., Rasul M.G., Arefin M.A., Akram M.W., Islam M.T., Chowdhury M.W., Investigation of major factors that cause diesel NOx formation and assessment of energy and exergy parameters using e-diesel blends, Fuel, 292, 120298, 2021.
  • 25. Herner J.D., Hu S., Robertson W.H., Huai T., Collins J.F., Dwyer H., et al., Effect of advanced aftertreatment for PM and NOx control on heavy-duty diesel truck emissions, Environ Sci Technol, 43, 5928–5933, 2009.
  • 26. Song X., Johnson J.H., Naber J.D., A review of the literature of selective catalytic reduction catalysts integrated into diesel particulate filters, J Automob Eng, 16, 738–749, 2014.
  • 27. Guan B., Zhan R., Lin H., Huang Z., Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines, J Environ Manage, 154, 225–258, 2015.
  • 28. Park S.Y., Rutland C.J., Narayanaswamy K., Schmieg S.J., He Y.S., Brown D.B., Development and validation of a model for wall-flow type selective catalytic reduction system, J Automob Eng, 225, 1641–1659, 2011.
  • 29. Sürer E., Solmaz H., Yılmaz E., Calam A., İpci D., Investigation of the effect of carbon nanotube addition to diesel-biodiesel blend on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1055–1064, 2022.
  • 30. Cesur İ., Çelik H.A., Effects of water injection on a partially ceramic coated piston spark plug ignition engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2133–2146, 2023.
  • 31. Oral F., Çolak N.Y., Şimşek D., The effects of waste engine oil and alcohol use as additional fuel in a diesel generator used in small-scale power generation on emission, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 865–874, 2022.
  • 32. Solmaz H., Calam A., Halis S., İpci D., Yılmaz E., Investigation of the effects of intake manifold pressure on performance and combustion characteristics in an HCCI engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1735–1750, 2022.
  • 33. Pedrozo V.B., May I., Dalla Nora M., Cairns A., Zhao H., Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load, Appl Energy, 165,166–182, 2016.
  • 34. Ambarita H., Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode, Case Stud Therm Eng, 10, 179–191, 2017.
  • 35. Pedrozo V.B., May I., Guan W., Zhao H., High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load, Fuel, 230, 440–451,2018.
  • 36. Senthilraja R., Sivakumar V., Thirugnanasambandham K., Nedunchezhian N., Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol–Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel, Energy, 112, 899–907, 2016.
  • 37. Boretti A., Advantages of converting Diesel engines to run as dual fuel ethanol–Diesel, Appl Therm Eng, 47, 1–9, 2012.
  • 38. Liu J., Guo Q., Guo J., Wang F., Optimization of a diesel/natural gas dual fuel engine under different diesel substitution ratios, Fuel, 305, 121522, 2021.
  • 39. Karim G.A., A review of combustion processes in the dual fuel engine—The gas diesel engine, Prog Energy Combust Sci, 6, 277–285, 1980.
  • 40. Tutak W., Jamrozik A., Comparative Analysis of Combustion Stability of Diesel/Ethanol Utilization by Blend and Dual Fuel, Process, 7, 946, 2019.
  • 41. Çakmak A., Improvement of exhaust emissions in a diesel engine with the addition of an oxygenated additive to diesel-biodiesel blends, Energetika, 68, 79–90, 2022.
  • 42. Çakmak A., Kapusuz M., Özcan H., Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine, Energy Sources Part A, 45, 178–193, 2023.
  • 43. Liu Y., Liu W., Liao H., Ashan H., Zhou W., Xu C., An Experimental and a Kinetic Modelling Study of Ethanol/Acetone/Ethyl Acetate Mixtures, Energies, 15, 2992, 2022.
  • 44. Santasnachok M., Sutheerasak E., Performance and Emission of a Diesel Engine Fuelled with B10-Ethyl Acetate-Ethanol Blends, 2021 9th Int Conf Smart Grid Clean Energy Technol, 51–56, 2021.
  • 45. Yeşilyurt M.K., Erol D., Yaman H., Doğan B., Effects of using ethyl acetate as a surprising additive in SI engine pertaining to an environmental perspective, Int J Environ Sci Technol, 19, 9427–9456,2022.
  • 46. Koçyiğit S., Özer S., Çelebi S., Demir U., Bio-based solutions for diesel engines: Investigating the effects of propolis additive and ethanol on performance and emissions, Therm Sci Eng Prog, 48, 102421, 2024.
  • 47. Abd Alla G.H., Soliman H.A., Badr O.A., Abd Rabbo M.F., Effect of pilot fuel quantity on the performance of a dual fuel engine, Energy Convers Manag, 41, 559–572, 2000.
  • 48. Lounici M.S., Loubar K., Tarabet L., Balistrou M., Niculescu D.C., Tazerout M., Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions, Energy, 64, 200–211, 2014.
  • 49. Cong D.N., Duc K.N., Duy V.N., Performance and pollutant characteristics of an old generation diesel engine fuelled with dual-fuel diesel-dimethyl ether, Int J Ambient Energy, 44, 555–563, 2023.
  • 50. Toledo E., Guerrero F., Amador G., Toledo M., Experimental Assessment of the Performance and Fine Particulate Matter Emissions of a LPG-Diesel Dual-Fuel Compression Ignition Engine, Energies, 15, 9035, 2022.
  • 51. Dev S., Guo H., Liko B., A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine, Front Mech Eng, 6, 545416, 2020.
  • 52. Guan W., Wang X., Zhao H., Liu H., Exploring the high load potential of diesel–methanol dual-fuel operation with Miller cycle, exhaust gas recirculation, and intake air cooling on a heavy-dutydiesel engine, J Automob Eng, 22, 2318–2336, 2020.
  • 53. Pham V.C., Choi J.H., Rho B.S., Kim J.S., Park K., Park S.K., et al., A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load, Energies, 14, 1342, 2021.
  • 54. Mittal M., Donahue R., Winnie P., Gillette A., Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot, J Energy Inst, 88,275–283, 2015.
  • 55. Lata D.B., Misra A., Medhekar S., Effect of hydrogen and LPG addition on the efficiency and emissions of a dual fuel diesel engine, Int J Hydrogen Energy, 37, 6084–6096, 2012.
  • 56. Rimkus A., Stravinskas S., Matijošius J., Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine, Appl Sci, 10, 359, 2020.
  • 57. Sanli A., Yılmaz I.T., Gümüş M., Assessment of combustion and exhaust emissions in a common- rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio, Int J Hydrogen Energy, 45, 3263–3283, 2020.
  • 58. Demir U., Çelebi S., Özer S., Experimental investigation of the effect of fuel oil, graphene and HHO gas addition to diesel fuel on engine performance and exhaust emissions in a diesel engine, Int J Hydrogen Energy, 52, 1434–1446, 2024.
  • 59. Yousefi A., Birouk M., Lawler B., Gharehghani A., Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels, Energy Convers Manag, 106, 322–336, 2015.
  • 60. García A., Monsalve-Serrano J., Villalta D., Lago Sari R., Gordillo Zavaleta V., Gaillard P., Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept, Appl Energy, 253, 113622, 2019.
  • 61. Haghighat Shoar F., Najafi B., Mosavi A., Effects of triethylene glycol mono methyl ether (TGME) as a novel oxygenated additive on emission and performance of a dual-fuel diesel engine fueled with natural gas-diesel/biodiesel, Energy Reports, 7, 1172–1189, 2021.
  • 62. Verma S., Das L.M., Bhatti S.S., Kaushik S.C., A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels, Energy Convers Manag, 151, 764–777, 2017.
  • 63. Demir U., Kozan A., Özer S., Experimental investigation of the effect of urea addition to fuel on engine performance and emissions in diesel engines, Fuel, 311, 122578, 2022.
  • 64. Yontar A.A., Injection parameters and lambda effects on diesel jet engine characteristics for JP- 8, FAME and naphtha fuels, Fuel, 271, 117647, 2020.
  • 65. Coşkun G., Demir Ü., Yazar S., Investigation the performance of 0-D and 3-D combustion simulation softwares for modelling HCCI engine with high air excess ratios, Sak Univ Fen Bilim Enst Derg, 21, 750–758, 2017.
  • 66. Çelebi S., Duzcan B., Demir U., Uyumaz A., Haşimoglu C., Effects of light naphtha utilization on engine performance in an homogeneous charged compression ignition engine, Fuel, 306, 121663, 2021.
  • 67. Özer S., Demir U., Koçyiğit S., Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions, Energy, 266, 126412, 2023.
  • 68. Barik D., Murugan S., Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine, Energy Convers Manag, 84, 217–226, 2014.

Effect of Using Ethyl Acetate as Second Fuel in Dual Fuel Diesel Engine on Engine Performance and Exhaust Emissions

Yıl 2025, Cilt: 40 Sayı: 2, 1259 - 1270
https://doi.org/10.17341/gazimmfd.1540598

Öz

This study investigates the effects of using ethyl acetate as a secondary fuel on the performance and exhaust emissions of a dual-fuel diesel engine. Experiments were conducted using a diesel engine operating at a constant speed of 1800 RPM under various loads (0%, 25%, 50%, 75%, and 100%). In addition to the standard diesel fuel injection system, ethyl acetate was injected into the intake manifold with varying injection durations of 1 ms, 2 ms, and 3 ms. Measured parameters included torque, specific fuel consumption (SFC), total energy consumption (Etotal), exhaust temperature, and emissions of CO, HC, CO2, O2, NOx, Lambda, IS, and others.

The test results at full load showed significant changes compared to the baseline measurements with 100% diesel fuel. Specifically, with 1 ms ethyl acetate injection, HC emissions decreased by 42.86%, NOx emissions decreased by 1.88%, and smoke emissions decreased by 72.45%. With 2 ms ethyl acetate injection, brake-specific fuel consumption (SFC) decreased by 1.28% and CO emissions decreased by 51.64%. With 3 ms ethyl acetate injection, total energy consumption (Etotal) decreased by 12.67% and the indicated mean effective pressure (IMEP) increased by 2.89%.

These findings indicate that the use of ethyl acetate as a secondary fuel in a dual-fuel diesel engine can significantly improve combustion efficiency and reduce harmful emissions, especially under full load conditions. The study provides valuable insights into the potential benefits of incorporating ethyl acetate into dual-fuel diesel engines, suggesting that this approach could lead to cleaner and more efficient diesel engine operation. Further research is recommended to optimize injection strategies and investigate the long-term effects of using ethyl acetate as a secondary fuel

Kaynakça

  • 1. Bharadwaj A., Evolution of the Global Automobile Industry, Prog Mater Sci, 1, 1–9, 2018.
  • 2. Yue Z., Liu H., Advanced Research on Internal Combustion Engines and Engine Fuels, Energies, 16, 5940, 2023.
  • 3. Pierce D., Haynes A., Hughes J., Graves R., Maziasz P., Muralidharan G., et al., High temperature materials for heavy duty diesel engines: Historical and future trends, Prog Mater Sci, 103, 109–179, 2019.
  • 4. Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E., Environmental and Health Impacts of Air Pollution: A Review, Front Public Health, 8, 505570, 2020.
  • 5. Peel J.L., Haeuber R., Garcia V., Russell A.G., Neas L., Impact of nitrogen and climate change interactions on ambient air pollution and human health, Biogeochemistry, 114, 121–134, 2013.
  • 6. Lloyd A.C., Cackette T.A., Diesel Engines: Environmental Impact and Control, J Air Waste Manag Assoc, 51, 809–847, 2001.
  • 7. Wagemakers A.M.L.M., Leermakers C.A.J., Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance, SAE Tech Pap, 2012.
  • 8. Monsalve-Serrano J., Belgiorno G., Di Blasio G., Guzmán-Mendoza M., 1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion, Energies, 13, 3734, 2020.
  • 9. Padala S., Woo C., Kook S., Hawkes E.R., Ethanol utilisation in a diesel engine using dual-fuelling technology, Fuel, 109, 597–607, 2013.
  • 10. Hegab A., La Rocca A., Shayler P., Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas, Renew Sustain Energy Rev, 70, 666–697, 2017.
  • 11. Jatoth R., Gugulothu S.K., Ravi kiran Sastry G., Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode, Energy, 225, 120218, 2021
  • 12. Wei L., Geng P., A review on natural gas/diesel dual fuel combustion, emissions and performance, Fuel Process Technol, 142, 264–278, 2016.
  • 13. Guido C., Alfè M., Gargiulo V., Napolitano P., Beatrice C., Del Giacomo N., Chemical/Physical Features of Particles Emitted from a Modern Automotive Dual-Fuel Methane-Diesel Engine, Energy Fuels, 32, 10154–10162, 2018.
  • 14. Dimitriou P., Tsujimura T., Kojima H., Aoyagi K., Kurimoto N., Nishijima Y., Experimental and Simulation Analysis of Natural Gas-Diesel Combustion in Dual-Fuel Engines, Front Mech Eng, 6, 543808, 2020.
  • 15. Cameretti M.C., De Robbio R., Mancaruso E., Palomba M., CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen, Energies, 15, 5521, 2022.
  • 16. Alimoradian B., Mockford I.J., A dual fuel system for converting automotive diesel engines for fuelling with natural gas, SAE Australasia, 48, 1988.
  • 17. Akbarian E., Najafi B., A novel fuel containing glycerol triacetate additive, biodiesel and diesel blends to improve dual-fuelled diesel engines performance and exhaust emissions, Fuel, 236, 666–676, 2019.
  • 18. Hashemi-Nejhad A., Najafi B., Ardabili S., Jafari G., Mosavi A., The Effect of Biodiesel, Ethanol, and Water on the Performance and Emissions of a Dual-Fuel Diesel Engine with Natural Gas: Sustainable Energy Production through a Life Cycle Assessment Approach, Int J Energy Res, 2023, 4630828.
  • 19. Khatri N., Khatri K.K., Hydrogen enrichment on diesel engine with biogas in dual fuel mode, Int J Hydrogen Energy, 45, 7128–7140, 2020.
  • 20. Kumar G., Kim S.H., Lay C.H., Ponnusamy V.K., Recent developments on alternative fuels, energy and environment for sustainability, Bioresour Technol, 317, 124010, 2020.
  • 21. Razak N.H., Hashim H., Yunus N.A., Klemeš J.J., Reducing diesel exhaust emissions by optimisation of alcohol oxygenates blend with diesel/biodiesel, J Clean Prod, 316, 128090, 2021.
  • 22. Chen H., Wang J., Shuai S., Chen W., Study of oxygenated biomass fuel blends on a diesel engine, Fuel, 87, 3462–3468, 2008.
  • 23. Elishav O., Mosevitzky Lis B., Miller E.M., Arent D.J., Valera-Medina A., Grinberg Dana A., et al., Progress and Prospective of Nitrogen-Based Alternative Fuels, Chem Rev, 120, 5352–5436, 2020.
  • 24. Nabi M.N., Rasul M.G., Arefin M.A., Akram M.W., Islam M.T., Chowdhury M.W., Investigation of major factors that cause diesel NOx formation and assessment of energy and exergy parameters using e-diesel blends, Fuel, 292, 120298, 2021.
  • 25. Herner J.D., Hu S., Robertson W.H., Huai T., Collins J.F., Dwyer H., et al., Effect of advanced aftertreatment for PM and NOx control on heavy-duty diesel truck emissions, Environ Sci Technol, 43, 5928–5933, 2009.
  • 26. Song X., Johnson J.H., Naber J.D., A review of the literature of selective catalytic reduction catalysts integrated into diesel particulate filters, J Automob Eng, 16, 738–749, 2014.
  • 27. Guan B., Zhan R., Lin H., Huang Z., Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines, J Environ Manage, 154, 225–258, 2015.
  • 28. Park S.Y., Rutland C.J., Narayanaswamy K., Schmieg S.J., He Y.S., Brown D.B., Development and validation of a model for wall-flow type selective catalytic reduction system, J Automob Eng, 225, 1641–1659, 2011.
  • 29. Sürer E., Solmaz H., Yılmaz E., Calam A., İpci D., Investigation of the effect of carbon nanotube addition to diesel-biodiesel blend on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1055–1064, 2022.
  • 30. Cesur İ., Çelik H.A., Effects of water injection on a partially ceramic coated piston spark plug ignition engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2133–2146, 2023.
  • 31. Oral F., Çolak N.Y., Şimşek D., The effects of waste engine oil and alcohol use as additional fuel in a diesel generator used in small-scale power generation on emission, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 865–874, 2022.
  • 32. Solmaz H., Calam A., Halis S., İpci D., Yılmaz E., Investigation of the effects of intake manifold pressure on performance and combustion characteristics in an HCCI engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1735–1750, 2022.
  • 33. Pedrozo V.B., May I., Dalla Nora M., Cairns A., Zhao H., Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load, Appl Energy, 165,166–182, 2016.
  • 34. Ambarita H., Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode, Case Stud Therm Eng, 10, 179–191, 2017.
  • 35. Pedrozo V.B., May I., Guan W., Zhao H., High efficiency ethanol-diesel dual-fuel combustion: A comparison against conventional diesel combustion from low to full engine load, Fuel, 230, 440–451,2018.
  • 36. Senthilraja R., Sivakumar V., Thirugnanasambandham K., Nedunchezhian N., Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol–Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel, Energy, 112, 899–907, 2016.
  • 37. Boretti A., Advantages of converting Diesel engines to run as dual fuel ethanol–Diesel, Appl Therm Eng, 47, 1–9, 2012.
  • 38. Liu J., Guo Q., Guo J., Wang F., Optimization of a diesel/natural gas dual fuel engine under different diesel substitution ratios, Fuel, 305, 121522, 2021.
  • 39. Karim G.A., A review of combustion processes in the dual fuel engine—The gas diesel engine, Prog Energy Combust Sci, 6, 277–285, 1980.
  • 40. Tutak W., Jamrozik A., Comparative Analysis of Combustion Stability of Diesel/Ethanol Utilization by Blend and Dual Fuel, Process, 7, 946, 2019.
  • 41. Çakmak A., Improvement of exhaust emissions in a diesel engine with the addition of an oxygenated additive to diesel-biodiesel blends, Energetika, 68, 79–90, 2022.
  • 42. Çakmak A., Kapusuz M., Özcan H., Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine, Energy Sources Part A, 45, 178–193, 2023.
  • 43. Liu Y., Liu W., Liao H., Ashan H., Zhou W., Xu C., An Experimental and a Kinetic Modelling Study of Ethanol/Acetone/Ethyl Acetate Mixtures, Energies, 15, 2992, 2022.
  • 44. Santasnachok M., Sutheerasak E., Performance and Emission of a Diesel Engine Fuelled with B10-Ethyl Acetate-Ethanol Blends, 2021 9th Int Conf Smart Grid Clean Energy Technol, 51–56, 2021.
  • 45. Yeşilyurt M.K., Erol D., Yaman H., Doğan B., Effects of using ethyl acetate as a surprising additive in SI engine pertaining to an environmental perspective, Int J Environ Sci Technol, 19, 9427–9456,2022.
  • 46. Koçyiğit S., Özer S., Çelebi S., Demir U., Bio-based solutions for diesel engines: Investigating the effects of propolis additive and ethanol on performance and emissions, Therm Sci Eng Prog, 48, 102421, 2024.
  • 47. Abd Alla G.H., Soliman H.A., Badr O.A., Abd Rabbo M.F., Effect of pilot fuel quantity on the performance of a dual fuel engine, Energy Convers Manag, 41, 559–572, 2000.
  • 48. Lounici M.S., Loubar K., Tarabet L., Balistrou M., Niculescu D.C., Tazerout M., Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions, Energy, 64, 200–211, 2014.
  • 49. Cong D.N., Duc K.N., Duy V.N., Performance and pollutant characteristics of an old generation diesel engine fuelled with dual-fuel diesel-dimethyl ether, Int J Ambient Energy, 44, 555–563, 2023.
  • 50. Toledo E., Guerrero F., Amador G., Toledo M., Experimental Assessment of the Performance and Fine Particulate Matter Emissions of a LPG-Diesel Dual-Fuel Compression Ignition Engine, Energies, 15, 9035, 2022.
  • 51. Dev S., Guo H., Liko B., A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine, Front Mech Eng, 6, 545416, 2020.
  • 52. Guan W., Wang X., Zhao H., Liu H., Exploring the high load potential of diesel–methanol dual-fuel operation with Miller cycle, exhaust gas recirculation, and intake air cooling on a heavy-dutydiesel engine, J Automob Eng, 22, 2318–2336, 2020.
  • 53. Pham V.C., Choi J.H., Rho B.S., Kim J.S., Park K., Park S.K., et al., A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load, Energies, 14, 1342, 2021.
  • 54. Mittal M., Donahue R., Winnie P., Gillette A., Exhaust emissions characteristics of a multi-cylinder 18.1-L diesel engine converted to fueled with natural gas and diesel pilot, J Energy Inst, 88,275–283, 2015.
  • 55. Lata D.B., Misra A., Medhekar S., Effect of hydrogen and LPG addition on the efficiency and emissions of a dual fuel diesel engine, Int J Hydrogen Energy, 37, 6084–6096, 2012.
  • 56. Rimkus A., Stravinskas S., Matijošius J., Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine, Appl Sci, 10, 359, 2020.
  • 57. Sanli A., Yılmaz I.T., Gümüş M., Assessment of combustion and exhaust emissions in a common- rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio, Int J Hydrogen Energy, 45, 3263–3283, 2020.
  • 58. Demir U., Çelebi S., Özer S., Experimental investigation of the effect of fuel oil, graphene and HHO gas addition to diesel fuel on engine performance and exhaust emissions in a diesel engine, Int J Hydrogen Energy, 52, 1434–1446, 2024.
  • 59. Yousefi A., Birouk M., Lawler B., Gharehghani A., Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels, Energy Convers Manag, 106, 322–336, 2015.
  • 60. García A., Monsalve-Serrano J., Villalta D., Lago Sari R., Gordillo Zavaleta V., Gaillard P., Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept, Appl Energy, 253, 113622, 2019.
  • 61. Haghighat Shoar F., Najafi B., Mosavi A., Effects of triethylene glycol mono methyl ether (TGME) as a novel oxygenated additive on emission and performance of a dual-fuel diesel engine fueled with natural gas-diesel/biodiesel, Energy Reports, 7, 1172–1189, 2021.
  • 62. Verma S., Das L.M., Bhatti S.S., Kaushik S.C., A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels, Energy Convers Manag, 151, 764–777, 2017.
  • 63. Demir U., Kozan A., Özer S., Experimental investigation of the effect of urea addition to fuel on engine performance and emissions in diesel engines, Fuel, 311, 122578, 2022.
  • 64. Yontar A.A., Injection parameters and lambda effects on diesel jet engine characteristics for JP- 8, FAME and naphtha fuels, Fuel, 271, 117647, 2020.
  • 65. Coşkun G., Demir Ü., Yazar S., Investigation the performance of 0-D and 3-D combustion simulation softwares for modelling HCCI engine with high air excess ratios, Sak Univ Fen Bilim Enst Derg, 21, 750–758, 2017.
  • 66. Çelebi S., Duzcan B., Demir U., Uyumaz A., Haşimoglu C., Effects of light naphtha utilization on engine performance in an homogeneous charged compression ignition engine, Fuel, 306, 121663, 2021.
  • 67. Özer S., Demir U., Koçyiğit S., Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions, Energy, 266, 126412, 2023.
  • 68. Barik D., Murugan S., Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine, Energy Convers Manag, 84, 217–226, 2014.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hasan Ali Çelik 0000-0002-5083-6100

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 23 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Çelik, H. A. (2024). Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(2), 1259-1270. https://doi.org/10.17341/gazimmfd.1540598
AMA Çelik HA. Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi. GUMMFD. Aralık 2024;40(2):1259-1270. doi:10.17341/gazimmfd.1540598
Chicago Çelik, Hasan Ali. “Çift yakıtlı Dizel Motorunda Ikinci yakıt Olarak Etil Asetat kullanımının Motor Performansı Ve Egzoz Emisyonları üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 2 (Aralık 2024): 1259-70. https://doi.org/10.17341/gazimmfd.1540598.
EndNote Çelik HA (01 Aralık 2024) Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 2 1259–1270.
IEEE H. A. Çelik, “Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi”, GUMMFD, c. 40, sy. 2, ss. 1259–1270, 2024, doi: 10.17341/gazimmfd.1540598.
ISNAD Çelik, Hasan Ali. “Çift yakıtlı Dizel Motorunda Ikinci yakıt Olarak Etil Asetat kullanımının Motor Performansı Ve Egzoz Emisyonları üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/2 (Aralık 2024), 1259-1270. https://doi.org/10.17341/gazimmfd.1540598.
JAMA Çelik HA. Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi. GUMMFD. 2024;40:1259–1270.
MLA Çelik, Hasan Ali. “Çift yakıtlı Dizel Motorunda Ikinci yakıt Olarak Etil Asetat kullanımının Motor Performansı Ve Egzoz Emisyonları üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 2, 2024, ss. 1259-70, doi:10.17341/gazimmfd.1540598.
Vancouver Çelik HA. Çift yakıtlı dizel motorunda ikinci yakıt olarak etil asetat kullanımının motor performansı ve egzoz emisyonları üzerindeki etkisi. GUMMFD. 2024;40(2):1259-70.