Derleme
BibTex RIS Kaynak Göster

Technologıcal Approaches and Reuse of Gray Water Treatment

Yıl 2023, Cilt: 12 Sayı: 1, 1 - 14, 30.06.2023

Öz

One of the most important methods for the protection of water resources is the reuse of water. In this context, one of the interesting options related to wastewater reuse is the gray water recovery method. In this study, the treatment methods and reuse of gray water were discussed by giving the physical and chemical properties of gray water. One advantage of recycling gray water is that it is a abundant, alternative source of urban water, which is relatively easy to treat due to the fact that gray water has low concentrations of organic pollutants and pathogens. The use of treated gray water as a use water will contribute to the protection of water resources as well as positively affect the water balance in nature. Given the lack of water resources, the recycling of gray water seems to be a good option. Today, there are various studies on the design and reuse of gray water treatment systems in urban areas in smart city projects supported by advanced vital technologies, which increase the quality of life of their citizens and ultimately offer a more sustainable future with technological tools. However, the reuse of gray water is rarely applied in Turkey. Treating gray water and using it as reusable water will not only contribute to the protection of water resources, but will also reduce the amount of water used.

Kaynakça

  • AATTUT, 2010. Atıksu Arıtma Tesisleri Teknik Usuller Tebliği. Resmî Gazete Tarihi: 20.03.2010 Resmî Gazete Sayısı: 27527
  • Albalawneh, A., Chang, T.K., 2015. Revıew of the Greywater and Proposed Greywater Recyclıng Scheme for Agrıcultural Irrıgatıon Reuses. International Journal of Research Granthaalayah, 3 (12): 16-35. https://doi.org/10.29121/granthaalayah.v3.i12.2015.2882
  • Albalawneh, A., Chang, T.K., Alshawabkeh, H., 2017. Greywater treatment by granular filtration system using volcanic tuff and gravel media. Water Sci Technol, 75 (10): 2331–2341. https://doi.org/10.2166/wst.2017.102
  • Abed, S.N, Scholz, M., 2016. Chemical simulation of greywater. Environmental Technology, 37:1631-1646. https://doi.org/10.1080/09593330.2015.1123301
  • Al-Ghazawi, Z., Qasaimeh, A., Bani-Melhem. K., 2018. Ablution gray water qualitative assessment and treatment by submerged membrane bioreactor: a case study in Jordan. Desalination and Water Treatment, 127: 213-221. doi: 10.5004/dwt.2018.22790
  • Al-Gheethi, A.A.S., Noman, E.A., Mohamed, R.M.S.R., Talip, B.A., Abdullah, A.H., Kassim, A.H.M., 2019. Reuse of Greywater for Irrigation Purpose. In Management of Greywater in Developing Countries. Springer, 87: 73-87. ISBN 978-4-431-56833-9, ISBN 978-4-431-56835-3 (eBook). https://doi.org/10.1007/978-4-431-56835-3
  • Al-Gheethi, A.A., Radin Mohamed, R.M.S., Efaq, A.N., Amir Hashim, M.K., 2016. Reduction of microbial risk associated with greywater by disinfection processes for irrigation. J Water Health, 14 (3): 379–398. https://doi.org/10.2166/wh.2015.220
  • Al-Kalbani, M.S., Price, M.F., Ahmed, M., Abahussain, A., O’higgins, T., 2017. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman. Applied Water Science, 7(7): 3539-3552. https://doi.org/10.1007/s13201-017-0621-6
  • Arden, S., Ma, X., 2018. Constructed wetlands for greywater recycle and reuse: A review. Science of The Total Environment, 630: 587- 599. https://doi.org/10.1016/j.scitotenv.2018.02.218
  • Babaei, F., Ehrampoush, M.H., Eslami, H., Ghaneian, M.T., Fallahzadeh, H., Talebi, P., Fard, R.F., Ebrahimi, A.A., 2019. Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. Journal of Cleaner Production, 211: 922-931. https://doi.org/10.1016/j.jclepro.2018.11.255
  • Bani-Melhem, K., Smith, E., 2012. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chemical Engineering Journal, 198–199: 201-210. https://doi.org/10.1016/j.cej.2012.05.065
  • Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A.M., Qtaishat, R., Alkasrawi, M., 2015. On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476: 40-49. https://doi.org/10.1016/j.memsci.2014.11.010
  • Bani-Melhem, K.B., Al-Shannag, M., Al-Rousan, D., Al-Kofahi, S., Al-Qodah, Z., Al-Kilani, M.R., 2017. Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination and Water Treatment, 89:101-110. https://doi.org/10.5004/dwt.2017.21379
  • Boyjoo, Y., Ang, M., Pareek, V., 2012. Photocatalytic treatment of shower water using a pilot scale reactor. International Journal of Photoenergy, 2012:1-7. https://doi.org/10.1155/2012/578916
  • Boyjoo, Y., Pareek, V.K., Ang, M., 2013. A review of greywater characteristics and treatment processes. Water Sci Technol, 67 (7): 1403–1424. https://doi.org/10.2166/wst.2013.675
  • Busgang, A., Friedler, E., Gilboa, Y., Gross, A., 2018. Quantitative Microbial Risk Analysis for Various Bacterial Exposure Scenarios Involving Greywater Reuse for Irrigation. Water, 10(4): 1-15. https://doi.org/10.3390/w10040413
  • Cecconet, D., Callegari, A., Hlavínek, P., Capodaglio, A.G., 2019. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: a critical review. Clean Technologies and Environmental Policy, 21:745–762. https://doi.org/10.1007/s10098-019-01679-z
  • Cheng Leong, J.Y., Chong, M.N., Poh, P.E., 2018. Assessment of greywater quality and performance of a pilot-scale decentralised hybrid rainwater-greywater system. Journal of Cleaner Production, 172: 81-91. https://doi.org/10.1016/j.jclepro.2017.10.172
  • Chin, W.H., Roddick, F.A., Harris, J.L., 2009. Greywater treatment by UVC/H2O2. Water Res, 43(16):3940-3947. https://doi.org/10.1016/j.watres.2009.06.050
  • Chitra, D., Muruganandam, L., 2020. Performance of Natural Coagulants on Greywater Treatment. Ingenta Connect, 13(1): 81-92(12). https://doi.org/10.2174/2405520412666190911142553
  • Chrispim, M.C., Nolasco, M.A., 2017. Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil. Journal of Cleaner Production, 142(1):290-296. https://doi.org/10.1016/j.jclepro.2016.07.162
  • De Gisi, S., Casella, P., Notarnicola, M., Farina, R., 2016. Grey water in buildings: a mini-review of guidelines, technologies and case studies. Civil Engineering and Environmental Systems, 33(1): 35-54. http://dx.doi.org/10.1080/10286608.2015.1124868
  • Ding, A., Liang, H., Li, G., Szivak, I., Traber, J., Pronk, W., 2017. A low energy gravitydriven membrane bioreactor system for grey water treatment: Permeability and removal performance of organics. Journal of Membrane Science, 542:408–417. https://doi.org/10.1016/j.memsci.2017.08.037
  • Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., Friedler, E., 2020. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research, 27:7578–7587. https://doi.org/10.1007/s11356-019-07399-7
  • Edwin, G.A., Gopalsamy, P., Muthu, N., 2014, Characterization of domestic gray water from point source to determine the potential for urban residential reuse: a short review. Appl. Water Sci., 4:39 – 49. https://doi.org/10.1007/s13201-013-0128-8
  • Elmitwalli T, Otterpohl R, 2007. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor. Water Research, 41:1379–1387. https://doi.org/10.1016/j.watres.2006.12.016
  • Eriksson, E., Donner, E., 2009. Metals in greywater: sources, presence and remova efficiencies. Desalination, 248(1-3): 271-278. https://doi.org/10.1016/j.desal.2008.05.065
  • Eslami, H., Ehrampoush. M.H., Falahzadeh, H., Hematabadi, P.T., Khosravi, R., Dalvand, A., Esmaeili, A., Taghavi, M., Ebrahimi, A.A., 2018. Biodegradation and nutrients removal from greywater by an integrated fixed-film activated sludge (IFAS) in different organic loadings rates. Amb Express, 8 (3):1-8. https://doi.org/10.1186/s13568-017-0532-9
  • Fountoulakis, M.S., Markakis, N., Petousi, I., Manios, T., 2016. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Science of The Total Environment, 551–552:706-711. https://doi.org/10.1016/j.scitotenv.2016.02.057
  • Friedler, E., Kovalio, R., Galil, N.I., 2005. On-site greywater treatment and reuse in multi-storey buildings. Water Sci. Technol., 51(10): 187–194. https://doi.org/10.2166/wst.2005.0366
  • Friedler, E., Hadari, M. 2006. Economic feasibility of on-site grey water reuse in multi-storey buildings, Desalination, 202 (1–3): 293–301. https://doi.org/10.1016/j.desal.2005.10.007
  • Friedler, E., Katz, I., Dosoretz, C.G., 2008. Chlorination and coagulation as pretreatments for greywater desalination. Desalination, 222(1–3): 38-49. https://doi.org/10.1016/j.desal.2007.01.130
  • García, E.A., Barceló, M.A., Bond, P., Keller, J., Gernjak, W., Radjenovic, J., 2018. Hybrid electrochemical-granular activated carbon system for the treatment of greywater. Chemical Engineering Journal, 352: 405-411. https://doi.org/10.1016/j.cej.2018.07.042
  • Ghunmi, L.A., Zeeman, Z., Fayyad, M., van Lier, J.B., 2011. Grey Water Treatment Systems: A Review. Critical Reviews in Environmental Science and Technology, 41(7):657-698. https://doi.org/10.1080/10643380903048443
  • Halalsheh, M., Dalahmeh, S., Sayed, M., Suleiman, W., Shareef, M., Mansour, M., Safi, M., 2008. Grey water characteristics and treatment options for rural areas in Jordan. Bioresource Technology, 99(14): 6635-6641. https://doi.org/10.1016/j.biortech.2007.12.029
  • Health Canada, 2010. ANNUAL REPORT. 2010–2011”, p 178. ISSN: 0842-3202
  • Hernández-Leal, L., Zeeman, G., Temmink, H., Buisman, J.N., 2011. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants. Water Practice and Technology, 6 (2): wpt2011035. https://doi.org/10.2166/wpt.2011.035
  • Hourlier. F., Masse, A., Jaouen, P., Lakel, A., Gerente, C., Faur, C., Cloirec, P.L., 2010. Formulation of synthetic greywater as an evaluation tool for wastewater recycling Technologies. Environmental Technology, 31(2): 215–223. https://doi.org/10.1080/09593330903431547
  • Huelgas, A., Funamizu, N., 2010. Flat-plate submerged membrane bioreactor for the treatment of higher-loadgraywater.Desalination,250(1):162-166. https://doi.org/10.1016/j.desal.2009.05.007
  • Huelgas-Orbecido, A., Funamizu, N., 2019. Membrane System for Gray Water. In Resource-Oriented Agro-sanitation Systems. Springer, 185-193. ISBN 978-4-431-56833-9, ISBN 978-4-431-56835-3 (eBook). https://doi.org/10.1007/978-4-431-56835-3
  • Jabri, K.M., Fiedler, T., Saidi, A., Nolde, E., Ogurek, M., Geissen, S.U., Bousselmi, L., 2019. Steady-state modeling of the biodegradation performance of a multistage moving bed biofilm reactor (MBBR) used for on-site greywater treatment. Environmental Science and Pollution Research, 26:19047–19062. https://doi.org/10.1007/s11356-018-3984-9
  • Javadinejad, S., Dara, R., Jafary, F., 2020. Gray Water Measurement and Feasibility of Retrieval Using Innovative Technology and Application in Water Resources Management in Isfahan-Iran. Journal of Geographical Research, 03(02):11-19. https://doi.org/10.30564/jgr.v3i2.1997
  • Jawaduddin, M., Memon, S.A., Bheel, N., Ali, F., Nisar, A., Abro, A.W., 2019. Synthetic grey water treatment through FeCl3-activated carbon obtained from cotton stalks and river sand. Civil Engineering Journal, 5(2):340-348.
  • Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., Judd, S., 2004. Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Sci Technol., 50 (2): 157–164. https://doi.org/10.2166/wst.2004.0113
  • Jeong, H., Broesicke, O.A., Drew, B., Crittenden, J.C., 2018. Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the city of Atlanta. Georgia. Journal of Cleaner Production, 174:333-342. https://doi.org/10.1016/j.jclepro.2017.10.193
  • Jong, J., Lee, J., Kim, J., Hyun, K., Hwang, T., Park, J., Choung, Y., 2010. The study of pathogenic microbial communities in graywater using membrane bioreactor. Desalination, 250:568–572. https://doi.org/10.1016/j.desal.2009.09.025
  • Juan, Y.K., Chen, Y., Lin, J.M., 2016. Greywater reuse system design and economic analysis for residential buildings in Taiwan. Water, 8(546): 1-11. https://doi.org/10.3390/w8110546
  • Karnapa, A., 2016. A review on gray water treatment and reuse. International Research Journal of Engineering and Technology, 03(02): 2665 – 2668. e-ISSN: 2395 -0056. p-ISSN: 2395-0072
  • Katukiza, A.Y., Ronteltap, M., Niwagaba, C.B., Kansiime, F., Lens, P.N.L., 2014. Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of Environmental Management, 146: 131-141. https://doi.org/10.1016/j.jenvman.2014.07.033
  • Khalil, M., Liu, Y., 2021. Greywater biodegradability and biological treatment technologies: A critical review. International Biodeterioration & Biodegradation, 161: 1-13. https://doi.org/10.1016/j.ibiod.2021.105211
  • Kraume, M., Scheumann, R., Baban, A., El Hamouri, B., 2010. Performance of a compact submerged membrane sequencing batch reactor (SM-SBR) for greywater treatment. Desalination, 250(3):1011-1013. https://doi.org/10.1016/j.desal.2009.09.093
  • Leal, L.H., Zeeman, G., Temmink, H., Buisman, C., 2007. Characterisation and biological treatment of greywater. Water Sci. Technol., 56(5):193-200. https://doi.org/10.2166/wst.2007.572
  • Leal, L.H., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011a. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Research, 45(9):2887-2896. https://doi.org/10.1016/j.watres.2011.03.009
  • Leal, L.H., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011b. Characterization and anaerobic biodegradability of grey water. Desalination, 270(1-3):111-115. https://doi.org/10.1016/j.desal.2010.11.029
  • Leal, L.H., Soeter, A.M., Kools, S.A.E., Kraak, M.H.S., Parsons, J.R., Temmink, H., Zeeman, G., Buisman, C.J.N., 2012. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Research, 46(4):1038-1044. https://doi.org/10.1016/j.watres.2011.11.079
  • Li, F., Wichmann, K., Otterpohl, R., 2009a. Review of the technological approaches for grey water treatment and reuses. Science of The Total Environment, 407(11):3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
  • Li, F., Wichmann, K., Otterpohl, R., 2009b. Evaluation of appropriate technologies for grey water treatments and reuses. Water Sci Technol, 59(2): 249–260. https://doi.org/10.2166/wst.2009.854
  • Liberman, N., Shandalov, S., Forgacs, C., Oron, G., Brenner, A., 2016. Use of MBR to sustain active biomass for treatment of low organic load grey water. Clean Techn Environ Policy, 18:1219–1224. https://doi.org/10.1007/s10098-016-1112-4
  • Maeda, M., Nakada, K., Kawamoto, K., Ikeda, M., 1996. Area-wide use of reclaimed water in Tokyo, Japan. Water Sci Technol, 33(10-11):51-57. https://doi.org/10.2166/wst.1996.0661
  • Maimon, A., Tal, A., Friedler, E., Gross, A., 2010. Safe on-Site Reuse of Greywater for Irrigation-A Critical Review of Current Guidelines. Environ. Sci. Technol., 44:3213–3220. https://doi.org/10.1021/es902646g
  • Manna, S., 2018. Treatment of Gray Water for Reusing in Non-potable Purpose to Conserve Water in India. International Journal of Applied Environmental Sciences, 13(8): 703-716. ISSN 0973-6077
  • Mohammadi, M.J., Takdastan, A., Jorfi, S., Neisi, A., Farhadi, M., Yari, A.R., Dobaradaran, S., Khaniabadi, Y.O., 2017. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran. Data in Brief, 11: 634-639. https://doi.org/10.1016/j.dib.2017.03.006
  • Nolde, E., 2000. Greywater reuse systems for toilet flushing in multi-storey buildings – over ten years experience in Berlin. Urban Water, 1(4): 275-284. https://doi.org/10.1016/S1462-0758(00)00023-6
  • O’Toole, J., Sinclair, M., Malawaraarachchi, M., Hamilton, A., Barker, S.F., Leder, K., 2012. Microbial quality assessment of household greywater. Water research, 46: 4301-4313. https://doi.org/10.1016/j.watres.2012.05.001
  • Oh, K.S., Leong, J.Y.C., Poh, P.E., Chong, M.N., Lau, E.V., 2018. A review of greywater recycling related issues: Challenges and future prospects in Malaysia. Journal of Cleaner Production, 171: 17-29. https://doi.org/10.1016/j.jclepro.2017.09.267
  • Onga, Z.C., Asadsangabifard, M., Ismail, Z., Tama, J.H., Roushenas, P., 2019. Design of a compact and effective greywater treatment system in Malaysia. Desalination and Water Treatment, 146: 141–151. https://doi.org/10.5004/dwt.2019.23631
  • Oron, G., Adel, M., Vered, A., Friedler, E., Halperin, R., Leshem, E., Weinberg, D., 2016. Greywater use in Israel and worldwide: Standards and prospects. Water Research, 58: 92-101. https://doi.org/10.1016/j.watres.2014.03.032
  • Palmquist, H., Hanæus, J., 2005. Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households. Science of the Total Environment, 348:151-163. https://doi.org/10.1016/j.scitotenv.2004.12.052
  • Pidou, M., Memon, F.A., Stephenson, T., Jefferson, B., Jeffrey, P., 2007. Greywater recycling: treatment options and applications. Proceedings of the Institution of Civil Engineers -Engineering Sustainability, 160:119–131. https://doi.org/10.1680/ensu.2007.160.3.119
  • Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S.A., Liu, S., Memon, F.A., Jefferson, B., 2008. Chemical solutions for greywater recycling. Chemosphere, 71: 147–155. https://doi.org/10.1016/j.chemosphere.2007.10.046
  • Prasad, R., Sharma, D., Yadav, K.D., Ibrahim, H., 2021. Preliminary study on greywater treatment using water hyacinth. Applied Water Science, 11(88): 1-8. https://doi.org/10.1007/s13201-021-01422-4
  • Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A., 2018. Green walls for greywater reuse: Understanding the role of media on pollutant removal. Ecological Engineering, 102: 625-635. https://doi.org/10.1016/j.ecoleng.2017.02.045
  • Revitt, D.M., Eriksson, E., Erica Donner, E., 2011. The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads. Water Research, 45(4): 1549-1560. https://doi.org/10.1016/j.watres.2010.11.027
  • Saidi, A., Masmoudi, K., Nolde, E., El Amrani, B., Amraoui, F., 2017. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR). Water Sci. Technol., 76 (12): 3328–3339. https://doi.org/10.2166/wst.2017.499
  • Sanchez, M., Rivero, M.J., Ortiz, I., 2010. Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination, 262(1-3):141-146. https://doi.org/10.1016/j.desal.2010.05.060
  • Santasmasas, C., Rovira, M., Clarens, F., Valderrama, C., 2013. Grey water reclamation by decentralized MBR prototype,» Resources. Conservation and Recycling, 72: 102-107. https://doi.org/10.1016/j.resconrec.2013.01.004
  • Shafiquzzaman, M., Haider, H., AlSaleem, S.S., Ghumman, A.R., Sadiq, R., 2018. Development of Consumer Perception Index for assessing greywater reuse potential in arid environments. Water SA, 2018, 44(4): 771-781. https://doi.org/10.4314/wsa.v44i4.25
  • Shaikh, I.N., Ahammed, M.M., Krishnan, M.P.S., 2019. Chapter 2 -Graywater treatment and reuse, Sustainable Water and Wastewater Processing, 19–54. https://doi.org/10.1016/B978-0-12-816170-8.00002-8
  • Sharaf, A., Guo, B., Shoults, D.C., Ashbolt, N.J., Liu, Y., 2020. Viability of a Single-Stage Unsaturated-Saturated Granular Activated Carbon Biofilter for Greywater Treatment. Sustainability, 12(21):1-16. https://doi.org/10.3390/su12218847
  • Sharaf, A., Liu, Y., 2021. Mechanisms and kinetics of greywater treatment using biologically active granular activated carbon. Chemosphere, 263:1-8. https://doi.org/10.1016/j.chemosphere.2020.128113
  • Sharon, V., 2020. Effect of Greywater Characteristics on its Chemical Coagulation. International Journal Of Engineering Technology and Management Sciences[IJETMS], 4(2):pp 1-6. https://doi.org/10.46647/ijetms.2020.v04i02.001
  • Thomaidi, V., Petousi, I., Kotsia, D., Kalogerakis, N., Fountoulakis, M.S., 2022. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. Science of the Total Environment, 807(3): pp1-7. https://doi.org/10.1016/j.scitotenv.2021.151004
  • U.S. Environmental Protection Agency (USEPA), 2012. Guidelines for Water Reuse. 26:642. doi: EPA/600/R-12/618 Ustün, G.E., Tırpancı, A., 2015. The Treatment and Reuse of Gray Water. Uludag University Journal of Engineering Faculty, 20(2):119-139 (Gri Suyun Arıtımı ve Yeniden Kullanımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2):119-139) https://doi.org/10.17482/uujfe.79618
  • Uddin, S.M.N., Li, Z., Adamowski, J.F., Ulbrich, T., Mang, H.P., Ryndin, R., Norvanchig, J., Lapegue, J., Wriege-Bechthold, A., Cheng, S., 2016. Feasibility of a greenhouse system for household greywater treatment in nomadic-cultured communities in peri-urban Ger areas of Ulaanbaatar, Mongolia: an approach to reduce greywater-borne hazards and vulnerability. Journal of Cleaner Production, 114:431-442. https://doi.org/10.1016/j.jclepro.2015.07.149
  • WHO, UNEP 2006. WHO guidelines for the safety use of wastewater. Excreta and Greywater, Geneva, WHO Library Cataloguing-in-Publication Data, 128. ISBN: 92 4 154682 4
  • World Health Organization (WHO), 2006. Guıdelınes For The Safe Use Of Wastewater, Excreta And Greywater, 1: 19-30. ISBN 92 4 154682 4 (v. 1)
  • Widiastuti, N., Wu, H.W., Ang, H.M., Zhang, D.K., 2011. Removal of ammonium from greywater using natural zeolite. Desalination, 277(1-3):15-23. https://doi.org/10.1016/j.desal.2011.03.030
  • Winward, G.P., Avery, L.M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., Jefferson, B., 2008. A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological engineering, 32(2):187-197. https://doi.org/10.1016/j.ecoleng.2007.11.001
  • Wu, B., 2018. Membrane-based technology in greywater reclamation: a review. Science of The Total Environment 656: 184-200. https://doi.org/10.1016/j.scitotenv.2018.11.347
  • Wurochekke, A.A., Mohamed, R.M.S., Al-Gheethi, A.A., Hauwa Atiku, H., Amir, H.M., Matias-Peralta, H.M., 2016. Household greywater treatment methods using natural materials and their hybrid system. Journal of Water and Health, 14(6):914-928. https://doi.org/10.2166/wh.2016.054
  • Zha, X., Ma, J., Lu, X., 2018. Performance of a coupling device combined energy-efficient rotating biological contactors with anoxic filter for low-strength rural wastewater treatment. Journal of Cleaner Production, 196:1106-1115. https://doi.org/10.1016/j.jclepro.2018.06.138
  • Zhu, Z., Dou, J., 2018. Current status of reclaimed water in China: an overview. J Water Reuse Desalin, 8:293–307. https://doi.org/10.2166/wrd.2018.070
  • Zhoua, Y., Lia, R., Guo, B., Zhang, L., Zou, X., Xia, S., Liua, Y., 2020. Greywater treatment using an oxygen-based membrane biofilm reactor: Formation of dynamic multifunctional biofilm for organics and nitrogen removal. Chemical Engineering Journal, 386: 1-10. https://doi.org/10.1016/j.cej.2019.123989

Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı

Yıl 2023, Cilt: 12 Sayı: 1, 1 - 14, 30.06.2023

Öz

Su kaynaklarının korunması için en önemli yöntemlerden biri suyun yeniden kullanımıdır. Bu bağlamda atıksuyun yeniden kullanımıyla ilgili ilginç seçeneklerden birisi ise gri su geri kazanım yöntemidir. Bu çalışmada gri suyun fiziksel ve kimyasal özellikleri verilerek gri suyun arıtım yöntemleri ve yeniden kullanımı ele alınmıştır. Gri suyun geri dönüştürülmesinin bir avantajı, gri suyun düşük konsantrasyonlarda organik kirletici ve patojenlere sahip olması nedeniyle arıtılması nispeten kolay olan bol, alternatif bir kentsel su kaynağı olmasıdır. Arıtılmış gri suyun kullanım suyu olarak kullanılması su kaynaklarının korunmasına katkı sağlayacağı gibi doğadaki su dengesini de olumlu etkileyecektir. Su kaynaklarının eksikliği göz önüne alındığında, gri suyun geri dönüşümü iyi bir seçenek gibi görünmektedir. Günümüzde teknolojik araçlarla vatandaşlarının yaşam kalitesini artırmak ve sonuçta daha sürdürülebilir bir gelecek sunan; ileri yaşamsal teknolojiler ile desteklenmiş akıllı şehir projelerinde şehir içi alanlarda gri su arıtma sistemlerinin dizaynı ve yeniden kullanımıyla ilgili gerçekleştirilen çeşitli çalışmalara rastlanabilmektedir. Ancak gri suyun yeniden kullanımı Türkiye’de nadiren uygulanmaktadır. Gri suyun arıtılıp tekrar kullanım suyu olarak kullanılması su kaynaklarının korunmasına katkı sağlayacağı gibi kullanılan su miktarını da azaltacaktır.

Kaynakça

  • AATTUT, 2010. Atıksu Arıtma Tesisleri Teknik Usuller Tebliği. Resmî Gazete Tarihi: 20.03.2010 Resmî Gazete Sayısı: 27527
  • Albalawneh, A., Chang, T.K., 2015. Revıew of the Greywater and Proposed Greywater Recyclıng Scheme for Agrıcultural Irrıgatıon Reuses. International Journal of Research Granthaalayah, 3 (12): 16-35. https://doi.org/10.29121/granthaalayah.v3.i12.2015.2882
  • Albalawneh, A., Chang, T.K., Alshawabkeh, H., 2017. Greywater treatment by granular filtration system using volcanic tuff and gravel media. Water Sci Technol, 75 (10): 2331–2341. https://doi.org/10.2166/wst.2017.102
  • Abed, S.N, Scholz, M., 2016. Chemical simulation of greywater. Environmental Technology, 37:1631-1646. https://doi.org/10.1080/09593330.2015.1123301
  • Al-Ghazawi, Z., Qasaimeh, A., Bani-Melhem. K., 2018. Ablution gray water qualitative assessment and treatment by submerged membrane bioreactor: a case study in Jordan. Desalination and Water Treatment, 127: 213-221. doi: 10.5004/dwt.2018.22790
  • Al-Gheethi, A.A.S., Noman, E.A., Mohamed, R.M.S.R., Talip, B.A., Abdullah, A.H., Kassim, A.H.M., 2019. Reuse of Greywater for Irrigation Purpose. In Management of Greywater in Developing Countries. Springer, 87: 73-87. ISBN 978-4-431-56833-9, ISBN 978-4-431-56835-3 (eBook). https://doi.org/10.1007/978-4-431-56835-3
  • Al-Gheethi, A.A., Radin Mohamed, R.M.S., Efaq, A.N., Amir Hashim, M.K., 2016. Reduction of microbial risk associated with greywater by disinfection processes for irrigation. J Water Health, 14 (3): 379–398. https://doi.org/10.2166/wh.2015.220
  • Al-Kalbani, M.S., Price, M.F., Ahmed, M., Abahussain, A., O’higgins, T., 2017. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman. Applied Water Science, 7(7): 3539-3552. https://doi.org/10.1007/s13201-017-0621-6
  • Arden, S., Ma, X., 2018. Constructed wetlands for greywater recycle and reuse: A review. Science of The Total Environment, 630: 587- 599. https://doi.org/10.1016/j.scitotenv.2018.02.218
  • Babaei, F., Ehrampoush, M.H., Eslami, H., Ghaneian, M.T., Fallahzadeh, H., Talebi, P., Fard, R.F., Ebrahimi, A.A., 2019. Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. Journal of Cleaner Production, 211: 922-931. https://doi.org/10.1016/j.jclepro.2018.11.255
  • Bani-Melhem, K., Smith, E., 2012. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chemical Engineering Journal, 198–199: 201-210. https://doi.org/10.1016/j.cej.2012.05.065
  • Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A.M., Qtaishat, R., Alkasrawi, M., 2015. On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476: 40-49. https://doi.org/10.1016/j.memsci.2014.11.010
  • Bani-Melhem, K.B., Al-Shannag, M., Al-Rousan, D., Al-Kofahi, S., Al-Qodah, Z., Al-Kilani, M.R., 2017. Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination and Water Treatment, 89:101-110. https://doi.org/10.5004/dwt.2017.21379
  • Boyjoo, Y., Ang, M., Pareek, V., 2012. Photocatalytic treatment of shower water using a pilot scale reactor. International Journal of Photoenergy, 2012:1-7. https://doi.org/10.1155/2012/578916
  • Boyjoo, Y., Pareek, V.K., Ang, M., 2013. A review of greywater characteristics and treatment processes. Water Sci Technol, 67 (7): 1403–1424. https://doi.org/10.2166/wst.2013.675
  • Busgang, A., Friedler, E., Gilboa, Y., Gross, A., 2018. Quantitative Microbial Risk Analysis for Various Bacterial Exposure Scenarios Involving Greywater Reuse for Irrigation. Water, 10(4): 1-15. https://doi.org/10.3390/w10040413
  • Cecconet, D., Callegari, A., Hlavínek, P., Capodaglio, A.G., 2019. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: a critical review. Clean Technologies and Environmental Policy, 21:745–762. https://doi.org/10.1007/s10098-019-01679-z
  • Cheng Leong, J.Y., Chong, M.N., Poh, P.E., 2018. Assessment of greywater quality and performance of a pilot-scale decentralised hybrid rainwater-greywater system. Journal of Cleaner Production, 172: 81-91. https://doi.org/10.1016/j.jclepro.2017.10.172
  • Chin, W.H., Roddick, F.A., Harris, J.L., 2009. Greywater treatment by UVC/H2O2. Water Res, 43(16):3940-3947. https://doi.org/10.1016/j.watres.2009.06.050
  • Chitra, D., Muruganandam, L., 2020. Performance of Natural Coagulants on Greywater Treatment. Ingenta Connect, 13(1): 81-92(12). https://doi.org/10.2174/2405520412666190911142553
  • Chrispim, M.C., Nolasco, M.A., 2017. Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil. Journal of Cleaner Production, 142(1):290-296. https://doi.org/10.1016/j.jclepro.2016.07.162
  • De Gisi, S., Casella, P., Notarnicola, M., Farina, R., 2016. Grey water in buildings: a mini-review of guidelines, technologies and case studies. Civil Engineering and Environmental Systems, 33(1): 35-54. http://dx.doi.org/10.1080/10286608.2015.1124868
  • Ding, A., Liang, H., Li, G., Szivak, I., Traber, J., Pronk, W., 2017. A low energy gravitydriven membrane bioreactor system for grey water treatment: Permeability and removal performance of organics. Journal of Membrane Science, 542:408–417. https://doi.org/10.1016/j.memsci.2017.08.037
  • Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., Friedler, E., 2020. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research, 27:7578–7587. https://doi.org/10.1007/s11356-019-07399-7
  • Edwin, G.A., Gopalsamy, P., Muthu, N., 2014, Characterization of domestic gray water from point source to determine the potential for urban residential reuse: a short review. Appl. Water Sci., 4:39 – 49. https://doi.org/10.1007/s13201-013-0128-8
  • Elmitwalli T, Otterpohl R, 2007. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor. Water Research, 41:1379–1387. https://doi.org/10.1016/j.watres.2006.12.016
  • Eriksson, E., Donner, E., 2009. Metals in greywater: sources, presence and remova efficiencies. Desalination, 248(1-3): 271-278. https://doi.org/10.1016/j.desal.2008.05.065
  • Eslami, H., Ehrampoush. M.H., Falahzadeh, H., Hematabadi, P.T., Khosravi, R., Dalvand, A., Esmaeili, A., Taghavi, M., Ebrahimi, A.A., 2018. Biodegradation and nutrients removal from greywater by an integrated fixed-film activated sludge (IFAS) in different organic loadings rates. Amb Express, 8 (3):1-8. https://doi.org/10.1186/s13568-017-0532-9
  • Fountoulakis, M.S., Markakis, N., Petousi, I., Manios, T., 2016. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Science of The Total Environment, 551–552:706-711. https://doi.org/10.1016/j.scitotenv.2016.02.057
  • Friedler, E., Kovalio, R., Galil, N.I., 2005. On-site greywater treatment and reuse in multi-storey buildings. Water Sci. Technol., 51(10): 187–194. https://doi.org/10.2166/wst.2005.0366
  • Friedler, E., Hadari, M. 2006. Economic feasibility of on-site grey water reuse in multi-storey buildings, Desalination, 202 (1–3): 293–301. https://doi.org/10.1016/j.desal.2005.10.007
  • Friedler, E., Katz, I., Dosoretz, C.G., 2008. Chlorination and coagulation as pretreatments for greywater desalination. Desalination, 222(1–3): 38-49. https://doi.org/10.1016/j.desal.2007.01.130
  • García, E.A., Barceló, M.A., Bond, P., Keller, J., Gernjak, W., Radjenovic, J., 2018. Hybrid electrochemical-granular activated carbon system for the treatment of greywater. Chemical Engineering Journal, 352: 405-411. https://doi.org/10.1016/j.cej.2018.07.042
  • Ghunmi, L.A., Zeeman, Z., Fayyad, M., van Lier, J.B., 2011. Grey Water Treatment Systems: A Review. Critical Reviews in Environmental Science and Technology, 41(7):657-698. https://doi.org/10.1080/10643380903048443
  • Halalsheh, M., Dalahmeh, S., Sayed, M., Suleiman, W., Shareef, M., Mansour, M., Safi, M., 2008. Grey water characteristics and treatment options for rural areas in Jordan. Bioresource Technology, 99(14): 6635-6641. https://doi.org/10.1016/j.biortech.2007.12.029
  • Health Canada, 2010. ANNUAL REPORT. 2010–2011”, p 178. ISSN: 0842-3202
  • Hernández-Leal, L., Zeeman, G., Temmink, H., Buisman, J.N., 2011. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants. Water Practice and Technology, 6 (2): wpt2011035. https://doi.org/10.2166/wpt.2011.035
  • Hourlier. F., Masse, A., Jaouen, P., Lakel, A., Gerente, C., Faur, C., Cloirec, P.L., 2010. Formulation of synthetic greywater as an evaluation tool for wastewater recycling Technologies. Environmental Technology, 31(2): 215–223. https://doi.org/10.1080/09593330903431547
  • Huelgas, A., Funamizu, N., 2010. Flat-plate submerged membrane bioreactor for the treatment of higher-loadgraywater.Desalination,250(1):162-166. https://doi.org/10.1016/j.desal.2009.05.007
  • Huelgas-Orbecido, A., Funamizu, N., 2019. Membrane System for Gray Water. In Resource-Oriented Agro-sanitation Systems. Springer, 185-193. ISBN 978-4-431-56833-9, ISBN 978-4-431-56835-3 (eBook). https://doi.org/10.1007/978-4-431-56835-3
  • Jabri, K.M., Fiedler, T., Saidi, A., Nolde, E., Ogurek, M., Geissen, S.U., Bousselmi, L., 2019. Steady-state modeling of the biodegradation performance of a multistage moving bed biofilm reactor (MBBR) used for on-site greywater treatment. Environmental Science and Pollution Research, 26:19047–19062. https://doi.org/10.1007/s11356-018-3984-9
  • Javadinejad, S., Dara, R., Jafary, F., 2020. Gray Water Measurement and Feasibility of Retrieval Using Innovative Technology and Application in Water Resources Management in Isfahan-Iran. Journal of Geographical Research, 03(02):11-19. https://doi.org/10.30564/jgr.v3i2.1997
  • Jawaduddin, M., Memon, S.A., Bheel, N., Ali, F., Nisar, A., Abro, A.W., 2019. Synthetic grey water treatment through FeCl3-activated carbon obtained from cotton stalks and river sand. Civil Engineering Journal, 5(2):340-348.
  • Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., Judd, S., 2004. Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Sci Technol., 50 (2): 157–164. https://doi.org/10.2166/wst.2004.0113
  • Jeong, H., Broesicke, O.A., Drew, B., Crittenden, J.C., 2018. Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the city of Atlanta. Georgia. Journal of Cleaner Production, 174:333-342. https://doi.org/10.1016/j.jclepro.2017.10.193
  • Jong, J., Lee, J., Kim, J., Hyun, K., Hwang, T., Park, J., Choung, Y., 2010. The study of pathogenic microbial communities in graywater using membrane bioreactor. Desalination, 250:568–572. https://doi.org/10.1016/j.desal.2009.09.025
  • Juan, Y.K., Chen, Y., Lin, J.M., 2016. Greywater reuse system design and economic analysis for residential buildings in Taiwan. Water, 8(546): 1-11. https://doi.org/10.3390/w8110546
  • Karnapa, A., 2016. A review on gray water treatment and reuse. International Research Journal of Engineering and Technology, 03(02): 2665 – 2668. e-ISSN: 2395 -0056. p-ISSN: 2395-0072
  • Katukiza, A.Y., Ronteltap, M., Niwagaba, C.B., Kansiime, F., Lens, P.N.L., 2014. Grey water treatment in urban slums by a filtration system: Optimisation of the filtration medium. Journal of Environmental Management, 146: 131-141. https://doi.org/10.1016/j.jenvman.2014.07.033
  • Khalil, M., Liu, Y., 2021. Greywater biodegradability and biological treatment technologies: A critical review. International Biodeterioration & Biodegradation, 161: 1-13. https://doi.org/10.1016/j.ibiod.2021.105211
  • Kraume, M., Scheumann, R., Baban, A., El Hamouri, B., 2010. Performance of a compact submerged membrane sequencing batch reactor (SM-SBR) for greywater treatment. Desalination, 250(3):1011-1013. https://doi.org/10.1016/j.desal.2009.09.093
  • Leal, L.H., Zeeman, G., Temmink, H., Buisman, C., 2007. Characterisation and biological treatment of greywater. Water Sci. Technol., 56(5):193-200. https://doi.org/10.2166/wst.2007.572
  • Leal, L.H., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011a. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Research, 45(9):2887-2896. https://doi.org/10.1016/j.watres.2011.03.009
  • Leal, L.H., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011b. Characterization and anaerobic biodegradability of grey water. Desalination, 270(1-3):111-115. https://doi.org/10.1016/j.desal.2010.11.029
  • Leal, L.H., Soeter, A.M., Kools, S.A.E., Kraak, M.H.S., Parsons, J.R., Temmink, H., Zeeman, G., Buisman, C.J.N., 2012. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Research, 46(4):1038-1044. https://doi.org/10.1016/j.watres.2011.11.079
  • Li, F., Wichmann, K., Otterpohl, R., 2009a. Review of the technological approaches for grey water treatment and reuses. Science of The Total Environment, 407(11):3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
  • Li, F., Wichmann, K., Otterpohl, R., 2009b. Evaluation of appropriate technologies for grey water treatments and reuses. Water Sci Technol, 59(2): 249–260. https://doi.org/10.2166/wst.2009.854
  • Liberman, N., Shandalov, S., Forgacs, C., Oron, G., Brenner, A., 2016. Use of MBR to sustain active biomass for treatment of low organic load grey water. Clean Techn Environ Policy, 18:1219–1224. https://doi.org/10.1007/s10098-016-1112-4
  • Maeda, M., Nakada, K., Kawamoto, K., Ikeda, M., 1996. Area-wide use of reclaimed water in Tokyo, Japan. Water Sci Technol, 33(10-11):51-57. https://doi.org/10.2166/wst.1996.0661
  • Maimon, A., Tal, A., Friedler, E., Gross, A., 2010. Safe on-Site Reuse of Greywater for Irrigation-A Critical Review of Current Guidelines. Environ. Sci. Technol., 44:3213–3220. https://doi.org/10.1021/es902646g
  • Manna, S., 2018. Treatment of Gray Water for Reusing in Non-potable Purpose to Conserve Water in India. International Journal of Applied Environmental Sciences, 13(8): 703-716. ISSN 0973-6077
  • Mohammadi, M.J., Takdastan, A., Jorfi, S., Neisi, A., Farhadi, M., Yari, A.R., Dobaradaran, S., Khaniabadi, Y.O., 2017. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran. Data in Brief, 11: 634-639. https://doi.org/10.1016/j.dib.2017.03.006
  • Nolde, E., 2000. Greywater reuse systems for toilet flushing in multi-storey buildings – over ten years experience in Berlin. Urban Water, 1(4): 275-284. https://doi.org/10.1016/S1462-0758(00)00023-6
  • O’Toole, J., Sinclair, M., Malawaraarachchi, M., Hamilton, A., Barker, S.F., Leder, K., 2012. Microbial quality assessment of household greywater. Water research, 46: 4301-4313. https://doi.org/10.1016/j.watres.2012.05.001
  • Oh, K.S., Leong, J.Y.C., Poh, P.E., Chong, M.N., Lau, E.V., 2018. A review of greywater recycling related issues: Challenges and future prospects in Malaysia. Journal of Cleaner Production, 171: 17-29. https://doi.org/10.1016/j.jclepro.2017.09.267
  • Onga, Z.C., Asadsangabifard, M., Ismail, Z., Tama, J.H., Roushenas, P., 2019. Design of a compact and effective greywater treatment system in Malaysia. Desalination and Water Treatment, 146: 141–151. https://doi.org/10.5004/dwt.2019.23631
  • Oron, G., Adel, M., Vered, A., Friedler, E., Halperin, R., Leshem, E., Weinberg, D., 2016. Greywater use in Israel and worldwide: Standards and prospects. Water Research, 58: 92-101. https://doi.org/10.1016/j.watres.2014.03.032
  • Palmquist, H., Hanæus, J., 2005. Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households. Science of the Total Environment, 348:151-163. https://doi.org/10.1016/j.scitotenv.2004.12.052
  • Pidou, M., Memon, F.A., Stephenson, T., Jefferson, B., Jeffrey, P., 2007. Greywater recycling: treatment options and applications. Proceedings of the Institution of Civil Engineers -Engineering Sustainability, 160:119–131. https://doi.org/10.1680/ensu.2007.160.3.119
  • Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S.A., Liu, S., Memon, F.A., Jefferson, B., 2008. Chemical solutions for greywater recycling. Chemosphere, 71: 147–155. https://doi.org/10.1016/j.chemosphere.2007.10.046
  • Prasad, R., Sharma, D., Yadav, K.D., Ibrahim, H., 2021. Preliminary study on greywater treatment using water hyacinth. Applied Water Science, 11(88): 1-8. https://doi.org/10.1007/s13201-021-01422-4
  • Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A., 2018. Green walls for greywater reuse: Understanding the role of media on pollutant removal. Ecological Engineering, 102: 625-635. https://doi.org/10.1016/j.ecoleng.2017.02.045
  • Revitt, D.M., Eriksson, E., Erica Donner, E., 2011. The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads. Water Research, 45(4): 1549-1560. https://doi.org/10.1016/j.watres.2010.11.027
  • Saidi, A., Masmoudi, K., Nolde, E., El Amrani, B., Amraoui, F., 2017. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR). Water Sci. Technol., 76 (12): 3328–3339. https://doi.org/10.2166/wst.2017.499
  • Sanchez, M., Rivero, M.J., Ortiz, I., 2010. Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination, 262(1-3):141-146. https://doi.org/10.1016/j.desal.2010.05.060
  • Santasmasas, C., Rovira, M., Clarens, F., Valderrama, C., 2013. Grey water reclamation by decentralized MBR prototype,» Resources. Conservation and Recycling, 72: 102-107. https://doi.org/10.1016/j.resconrec.2013.01.004
  • Shafiquzzaman, M., Haider, H., AlSaleem, S.S., Ghumman, A.R., Sadiq, R., 2018. Development of Consumer Perception Index for assessing greywater reuse potential in arid environments. Water SA, 2018, 44(4): 771-781. https://doi.org/10.4314/wsa.v44i4.25
  • Shaikh, I.N., Ahammed, M.M., Krishnan, M.P.S., 2019. Chapter 2 -Graywater treatment and reuse, Sustainable Water and Wastewater Processing, 19–54. https://doi.org/10.1016/B978-0-12-816170-8.00002-8
  • Sharaf, A., Guo, B., Shoults, D.C., Ashbolt, N.J., Liu, Y., 2020. Viability of a Single-Stage Unsaturated-Saturated Granular Activated Carbon Biofilter for Greywater Treatment. Sustainability, 12(21):1-16. https://doi.org/10.3390/su12218847
  • Sharaf, A., Liu, Y., 2021. Mechanisms and kinetics of greywater treatment using biologically active granular activated carbon. Chemosphere, 263:1-8. https://doi.org/10.1016/j.chemosphere.2020.128113
  • Sharon, V., 2020. Effect of Greywater Characteristics on its Chemical Coagulation. International Journal Of Engineering Technology and Management Sciences[IJETMS], 4(2):pp 1-6. https://doi.org/10.46647/ijetms.2020.v04i02.001
  • Thomaidi, V., Petousi, I., Kotsia, D., Kalogerakis, N., Fountoulakis, M.S., 2022. Use of green roofs for greywater treatment: Role of substrate, depth, plants, and recirculation. Science of the Total Environment, 807(3): pp1-7. https://doi.org/10.1016/j.scitotenv.2021.151004
  • U.S. Environmental Protection Agency (USEPA), 2012. Guidelines for Water Reuse. 26:642. doi: EPA/600/R-12/618 Ustün, G.E., Tırpancı, A., 2015. The Treatment and Reuse of Gray Water. Uludag University Journal of Engineering Faculty, 20(2):119-139 (Gri Suyun Arıtımı ve Yeniden Kullanımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2):119-139) https://doi.org/10.17482/uujfe.79618
  • Uddin, S.M.N., Li, Z., Adamowski, J.F., Ulbrich, T., Mang, H.P., Ryndin, R., Norvanchig, J., Lapegue, J., Wriege-Bechthold, A., Cheng, S., 2016. Feasibility of a greenhouse system for household greywater treatment in nomadic-cultured communities in peri-urban Ger areas of Ulaanbaatar, Mongolia: an approach to reduce greywater-borne hazards and vulnerability. Journal of Cleaner Production, 114:431-442. https://doi.org/10.1016/j.jclepro.2015.07.149
  • WHO, UNEP 2006. WHO guidelines for the safety use of wastewater. Excreta and Greywater, Geneva, WHO Library Cataloguing-in-Publication Data, 128. ISBN: 92 4 154682 4
  • World Health Organization (WHO), 2006. Guıdelınes For The Safe Use Of Wastewater, Excreta And Greywater, 1: 19-30. ISBN 92 4 154682 4 (v. 1)
  • Widiastuti, N., Wu, H.W., Ang, H.M., Zhang, D.K., 2011. Removal of ammonium from greywater using natural zeolite. Desalination, 277(1-3):15-23. https://doi.org/10.1016/j.desal.2011.03.030
  • Winward, G.P., Avery, L.M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., Jefferson, B., 2008. A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological engineering, 32(2):187-197. https://doi.org/10.1016/j.ecoleng.2007.11.001
  • Wu, B., 2018. Membrane-based technology in greywater reclamation: a review. Science of The Total Environment 656: 184-200. https://doi.org/10.1016/j.scitotenv.2018.11.347
  • Wurochekke, A.A., Mohamed, R.M.S., Al-Gheethi, A.A., Hauwa Atiku, H., Amir, H.M., Matias-Peralta, H.M., 2016. Household greywater treatment methods using natural materials and their hybrid system. Journal of Water and Health, 14(6):914-928. https://doi.org/10.2166/wh.2016.054
  • Zha, X., Ma, J., Lu, X., 2018. Performance of a coupling device combined energy-efficient rotating biological contactors with anoxic filter for low-strength rural wastewater treatment. Journal of Cleaner Production, 196:1106-1115. https://doi.org/10.1016/j.jclepro.2018.06.138
  • Zhu, Z., Dou, J., 2018. Current status of reclaimed water in China: an overview. J Water Reuse Desalin, 8:293–307. https://doi.org/10.2166/wrd.2018.070
  • Zhoua, Y., Lia, R., Guo, B., Zhang, L., Zou, X., Xia, S., Liua, Y., 2020. Greywater treatment using an oxygen-based membrane biofilm reactor: Formation of dynamic multifunctional biofilm for organics and nitrogen removal. Chemical Engineering Journal, 386: 1-10. https://doi.org/10.1016/j.cej.2019.123989
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Mustafa Bünyamin Karagözoğlu

Zinnur Yılmaz 0000-0002-2029-3854

Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Karagözoğlu, M. B., & Yılmaz, Z. (2023). Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 12(1), 1-14.
AMA Karagözoğlu MB, Yılmaz Z. Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. GBAD. Haziran 2023;12(1):1-14.
Chicago Karagözoğlu, Mustafa Bünyamin, ve Zinnur Yılmaz. “Gri Su Arıtımında Teknolojik Yaklaşımlar Ve Yeniden Kullanımı”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12, sy. 1 (Haziran 2023): 1-14.
EndNote Karagözoğlu MB, Yılmaz Z (01 Haziran 2023) Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12 1 1–14.
IEEE M. B. Karagözoğlu ve Z. Yılmaz, “Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı”, GBAD, c. 12, sy. 1, ss. 1–14, 2023.
ISNAD Karagözoğlu, Mustafa Bünyamin - Yılmaz, Zinnur. “Gri Su Arıtımında Teknolojik Yaklaşımlar Ve Yeniden Kullanımı”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12/1 (Haziran 2023), 1-14.
JAMA Karagözoğlu MB, Yılmaz Z. Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. GBAD. 2023;12:1–14.
MLA Karagözoğlu, Mustafa Bünyamin ve Zinnur Yılmaz. “Gri Su Arıtımında Teknolojik Yaklaşımlar Ve Yeniden Kullanımı”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 12, sy. 1, 2023, ss. 1-14.
Vancouver Karagözoğlu MB, Yılmaz Z. Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. GBAD. 2023;12(1):1-14.