Araştırma Makalesi
BibTex RIS Kaynak Göster

Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi

Yıl 2024, Cilt: 13 Sayı: 1, 116 - 125, 12.06.2024

Öz

Bu çalışmanın amacı domateste farklı anaçlar üzerine aşılamanın tuz stresi altında domates meyvelerinde kalite özelliklerine etkisi araştırılmıştır. Denemede 9 farklı domates aşı anacı kullanılmıştır (Amaron F₁ Fı (Antalya Tarım), Beaufort F₁ Fı (Antalya Tarım, Monsanto), Hamarat F₁ 9T7379 (Multi Seeds), Embajador RZ Fı (Rijk Zwaan), Armstrong F₁ 500292 (Syngenta), UG 5433 Fı, Suketto F₁ Fı (United Genetics), Sarar F₁ Fı ve Kalyon Fı (Yüksel Tohum)). Aşısız ve kendi üzerine aşılı bitkiler kontrol olarak kullanılmıştır. Aşılamada ticari çeşit olarak Alsancak F1 sırık domates çeşidi (Yüksel Tohum) kullanılmıştır. Fideler 20 Nisan 2023 tarihinde dikilmiştir. Bitkiler serada topraksız tarım koşullarında ve torf +perlit (3:1) ortamında yetiştirilmiştir. Bitkilerin gübrelenmesinde Hoagland besin solüsyonu modifiye edilerek kullanılmıştır. Denemede kontrol ve 3 farklı tuz konsantrasyonu kullanılmıştır. Kontrol uygulamasında Hoagland besin solüsyonu çiçeklenmeye kadar EC 1,80 dS m−1, çiçeklenmeden sonra EC 2,0 dS m−1 olacak şekilde kullanılmıştır. Besin solusyonunun pH’sı 6,5 olacak şekilde ayarlanmıştır. Tuz stresi uygulamasında 25, 50 ve 75 mM NaCl kullanılmıştır. Deneme tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak yürütülmüş, her parselde 6 bitki yetiştirilmiştir. Çalışmada suda çözünebilir kuru madde (sçkm-brix) (%), elektriksel iletkenlik (EC) (dS/m), pH, titre edilebilir asit miktarı (titrasyon asitliği) (%) (sitrik asit), ve meyve eti sertliği ölçümleri yapılmıştır. Tuz stresi domates meyvelerinde tat ve aromaya etki eden kalite parametrelerinde önemli artışlar sağlarken, aşı uygulamalarının etkisi anaçlara göre değişmiştir. Artan tuz konsantrasyonları suda çözünebilir kuru madde, titrasyon asitliği, elektriksel iletkenlik ve meyve eti sertliğinde lineer bir artış sağlamıştır. Meyve pH içeriği ile tuzluluk arasında anlamlı bir ilişki bulunamamıştır. Kontrol bitkileri dışında 9 anaç içinde tuz stresi koşullarında bariz olarak bir anaç öne çıkmamıştır. Bununla beraber bazı aşı kombinasyonları kontrole göre kalite parametrelinde artış sağlamıştır. Özellikle yüksek tuz konsantrasyonlarında aşılama suda çözünebilir kuru madde, titre edilebilir asit miktarı ve meyve eti sertliğini artırmıştır.

Destekleyen Kurum

Tokat Gaziosmanpaşa Üniversitesi bilimsel araştırma ve projeler, TÜBİTAK

Teşekkür

GOP BAP, TÜBİTAK

Kaynakça

  • Aktas, H., Abak, K., & Cakmak, I. 2006. Genotypic variation in the response of pepper to salinity. Scientia horticulturae, 110(3), 260-266.
  • Balliu, A., Sallaku, G., Rewald, B., 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Coban, A., Akhoundnejad, Y., Dere, S., & Dasgan, H.Y. 2020. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. HortScience, 55(1), 35-39.
  • Cohen, S., Naor, A., 2002. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant, Cell ve Environment, 25(1), 17-28.
  • Cornish, P. S., Nguyen, V. Q., 1989. Use of high soil solution electrical conductivity to improve the quality of fresh market tomatoes from coastal New South Wales. Australian Journal of Experimental Agriculture, 29(6), 893-900.
  • Cuartero, J., Fernández-Muñoz, R., 1998. Tomato and salinity. Scientia horticulturae, 78(1-4), 83-125.
  • Daliakopoulos, I. N., Pappa, P., Grillakis, M. G., Varouchakis, E. A., Tsanis, I. K., 2016. Modeling soil salinity in greenhouse cultivations under a changing climate with SALTMED: model modification and application in Timpaki, Crete. Soil science, 181(6), 241-251.
  • Dasgan, H. Y., Aktas, H., Abak, K., & Cakmak, I. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science, 163(4), 695-703.
  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., Lee, J. M., 2008. Cucurbit grafting. Critical reviews in plant Sciences, 27(1), 50-74.
  • Dilmaçünal, T., Koyuncu, M. A., Aktaş, H., Bayindir, D., 2011. The effects of several postharvest treatments on shelf life quality of bunch tomatoes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 209-213.
  • Eltez, R. Z., Tüzel, Y., Tüzel, İ. H., Ayşe, Gül., Demirelli, A., 2002. Besleyici film tekniğinde (NFT) sürekli ve fasılalı akışın domates yetiştiriciliğinde verim, kalite ve su tüketimine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 39(1).
  • Ergun, V., Aktas, H. 2018. Effect of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under open field conditions. Scientific Papers. Series B. Horticulture, 62:463-466.
  • Farooq, H., Bashir, M. A., Khalofah, A., Khan, K. A., Ramzan, M., Hussain, A., Ahmad, Z., 2021. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30(04), 3557-3564.
  • Fernández-Garcí, N., Martínez, V., Cerdá, A., & Carvajal, M. 2004. Fruit quality of grafted tomato plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 79(6), 995-1001.
  • Flores, F. B., Sanchez-Bel, P., Estañ, M. T., Martinez-Rodriguez, M. M., Moyano, E., Morales, B., Bolarín, M. C., 2010. The effectiveness of grafting to improve tomato fruit quality. Scientia horticulturae, 125(3), 211-217.
  • Geboloğlu, N., Yılmaz, E., Çakmak, P., Aydın, M., Kasap, Y., 2011. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6(10), 2147-2153.
  • Gerçekçioğlu, R., Asarkaya, U., Özatasever, Ö., 2019. ‘0900 Ziraat’Kiraz Çeşidinde Bor Uygulamasının Verim ve Meyve Kalitesine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(3), 120-129.
  • Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., Perica, S., 2008. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. The Journal of Agricultural Science, 146(6), 695-704.
  • Hoagland, D. R., Arnon, D. I., 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Jain, A. K., Sheline, R. K., Sood, P. C., Jain, K., 1990. Intrinsic states of deformed odd-A nuclei in the mass regions (151≤ A≤ 193) and (A≥ 221). Reviews of Modern Physics, 62(2), 393.
  • Jaksch, T., Kell, K., 1997. Grafting tomatoes ensures higher yields.
  • Kaymak, H.Ç., Güvenç, İ., Yarali, F., & Dönmez, M.F. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture and Forestry, 33(2), 173-179.
  • Keatinge, J. D. H., Lin, L. J., Ebert, A. W., Chen, W. Y., Hughes, J. A., Luther, G. C., Ravishankar, M., 2014. Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biological agriculture ve horticulture, 30(4), 272-287.
  • Kell, K., Jaksch, T., 1998. Comparison of rootstocks in tomato.
  • Krauss, S., Schnitzler, W. H., Grassmann, J., Woitke, M., 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry, 54(2), 441-448.
  • Kusvuran, S., Talhouni, M., & Ellialtioglu, S.S. 2019. Chapter Nineteen Overview on the Growth and Physiological Response of Grafted and Non-Grafted Vegetable Crops Under Salinity Stress. Trends in Landscape, Agriculture, Forest and Natural Science, 246.
  • Lee, J., Bang, H., Ham, H., 1997, October. Quality of cucumber fruit as affected by rootstock. In International Symposium on Vegetable Quality of Fresh and Fermented Vegetables 483 (pp. 117-124).
  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., Piernik, A., 2021. Ozmotik stres veya iyonik kompozisyon: Mahsul türlerinin erken gelişimini hangisi daha fazla etkiler? Tarım Bilimi , 11 (3), 435.
  • Martínez‐Carrasco, L., Brugarolas, M., Martínez‐Poveda, A., Ruiz, J. J., García‐Martínez, S., 2012. Modelling perceived quality of tomato by structural equation analysis. British Food Journal, 114(10), 1414-1431.
  • Martorana, M., Giuffrida, F., Leonardi, C., Kaya, S., 2006, February. Influence of rootstock on tomato response to salinity. In VIII International Symposium on Protected Cultivation in Mild Winter Climates: Advances in Soil and Soilless Cultivation under 747 (pp. 555-561).
  • Maync, A., 1999. Tomato cultivation in the unheated plastic tunnel-planting date, density, varieties.
  • Mills, D., Tal, M., 2004. The effect of ventilation on in vitro response of seedlings of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt stress. Plant cell, tissue and organ culture, 78, 209-216.
  • Minoia, S., Petrozza, A., D'Onofrio, O., Piron, F., Mosca, G., Sozio, G., Carriero, F., 2010. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC research notes, 3, 1-8.
  • Mitchell, JP, Shennan, C., Grattan, S.R., May, D.M., 1991. Su kıtlığı ve tuzluluk koşullarında domates meyve verim ve kalitesi. Amerikan Bahçe Bitkileri Bilimi Derneği Dergisi, 116 (2), 215-221.
  • Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Oda, M., Nagata, M., Tsuji, K., Sasaki, H., 1996. Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. Journal of the Japanese Society for Horticultural Science, 65(3), 531-536.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J., Lachaal, M., 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Öztekin, G, B, 2009. Aşılı domates bitkilerinde tuz stresine karşı anaçların etkisi. Ege Üniversitesi. Fen Bilimleri Enst. Doktora Tezi, 342.
  • Öztekin, G., Tüzel, Y., Gül, A., Tüzel, I. H., (2006, August). Effects of grafting in saline conditions. In XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 761 (pp. 349-355). Petro‐Turza, M. (1986). Flavor of tomato and tomato products. Food Reviews International, 2(3), 309-351.
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural resources forum (Vol. 38, No. 4, pp. 282-295).
  • Rasel, M., Tahjib-Ul-Arif, M., Hossain, M. A., Hassan, L., Farzana, S., Brestic, M., 2021. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. Journal of Plant Growth Regulation, 40, 1853-1868.
  • Rengasamy, P., 2006. World salinization with emphasis on Australia. Journal of experimental botany, 57(5), 1017-1023.
  • Riga, P., Benedicto, L., García-Flores, L., Villaño, D., Medina, S., ve Gil-Izquierdo, Á., 2016. Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 46, 50-59.
  • Rivero, R. M., Ruiz, J. M., Romero, L., 2003. Role of grafting in horticultural plants under stress conditions. Journal of food agriculture and environment, 1, 70-74.
  • Rouphael, Y., Schwarz, D., Krumbein, A., Colla, G., 2010. Impact of grafting on product quality of fruit vegetables. Scientia horticulturae, 127(2), 172-179.
  • Santa-Cruz, A., Acosta, M., Rus, A., Bolarin, M. C., 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology and Biochemistry, 37(1), 65-71.
  • Sato, S., Sakaguchi, S., Furukawa, H., Ikeda, H., 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia horticulturae, 109(3), 248-253.
  • Singh, H., Kumar, P., Kumar, A., Kyriacou, M. C., Colla, G., Rouphael, Y., 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy, 10(2), 263.
  • Squires, V. R., Glenn, E. P. 2011., Salination, desertification and soil erosion (Vol. 3, pp. 102-123). EOLSS Publications.
  • Turhan, A., Ozmen, N., Serbeci, M. S., Seniz, V., 2011. Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142-149.
  • Tüzel, Y., Duyar, H., Öztekin, G. B., Ayşe, G., (2009). Domates anaçlarının farklı dikim tarihlerinde bitki gelişimi, sıcaklık toplamı isteği, verim ve kaliteye etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 46(2), 79-92.
  • Wu, A. J., Andriotis, V. M., Durrant, M. C., Rathjen, J. P., 2004. A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase. The Plant Cell, 16(10), 2809-2821.

The Effect of Graftıng On Some Qualıty Parameters of Tomato Fruıt Under Salt Stress

Yıl 2024, Cilt: 13 Sayı: 1, 116 - 125, 12.06.2024

Öz

The aim of this study was to investigate the effect of grafting on different tomato rootstocks on the quality characteristics of tomato fruits under saline conditions. Nine tomato rootstocks were used in the experiment (Amaron F₁ (Antalya Tarım), Beaufort F₁ (Antalya Tarım, Monsanto), Hamarat F₁ 9T7379 (Multi Seeds), Embajador RZ Fı (Rijk Zwaan), Armstrong F₁ 500292 (Syngenta), UG 5433 Fı, Suketto F₁ (United Genetics), Sarar F₁ and Kalyon Fı (Yüksel Tohum)). Nongrafted and self-grafted plants were used as controls. Alsancak F1 undeterminate tomato variety (Yüksel Tohum) was used as scion. The seedlings were planted on April 20, 2023. Plants were grown in the greenhouse under soilless conditions and in peat + perlite (3:1) media. Modified Hoagland nutrient solution was used to fertilizing the plants. Control and 3 different salt concentrations were used in the experiment. In the control application, Hoagland nutrient solution was used with an EC of 1.80 dS m−1 until flowering and an EC of 2.0 dS m−1 after flowering. The pH of the nutrient solution was adjusted to 6.5. In the salt stress application, 25, 50 and 75 mM NaCl were used. The experiment was carried out with 3 replications according to the randomized plot design, and 6 plants were grown in each plot. In the study, water soluble solid matter (scm-brix) (%), electrical conductivity (EC) (dS/m), pH, titratable acidity (%) (citric acid), and fruit firmness were measured. While salt stress caused significant increases in quality parameters affecting taste and aroma in tomato fruits, the effect of grafting applications varied according to rootstocks. Increasing salt concentrations resulted in a linear increase in soluble solids matter, titratable acidity, electrical conductivity and fruit firmness. No significant relationship was found between fruit pH content and salinity. Apart from the control plants, among the 9 rootstocks, none of the rootstocks stood out clearly under salt stress conditions. However, some grafting combinations provided an increase in quality parameters compared to the control. Especially at high salt concentrations, grafting increased the water-soluble solids, titratable acidity and fruit firmness.

Kaynakça

  • Aktas, H., Abak, K., & Cakmak, I. 2006. Genotypic variation in the response of pepper to salinity. Scientia horticulturae, 110(3), 260-266.
  • Balliu, A., Sallaku, G., Rewald, B., 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Coban, A., Akhoundnejad, Y., Dere, S., & Dasgan, H.Y. 2020. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. HortScience, 55(1), 35-39.
  • Cohen, S., Naor, A., 2002. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant, Cell ve Environment, 25(1), 17-28.
  • Cornish, P. S., Nguyen, V. Q., 1989. Use of high soil solution electrical conductivity to improve the quality of fresh market tomatoes from coastal New South Wales. Australian Journal of Experimental Agriculture, 29(6), 893-900.
  • Cuartero, J., Fernández-Muñoz, R., 1998. Tomato and salinity. Scientia horticulturae, 78(1-4), 83-125.
  • Daliakopoulos, I. N., Pappa, P., Grillakis, M. G., Varouchakis, E. A., Tsanis, I. K., 2016. Modeling soil salinity in greenhouse cultivations under a changing climate with SALTMED: model modification and application in Timpaki, Crete. Soil science, 181(6), 241-251.
  • Dasgan, H. Y., Aktas, H., Abak, K., & Cakmak, I. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science, 163(4), 695-703.
  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., Lee, J. M., 2008. Cucurbit grafting. Critical reviews in plant Sciences, 27(1), 50-74.
  • Dilmaçünal, T., Koyuncu, M. A., Aktaş, H., Bayindir, D., 2011. The effects of several postharvest treatments on shelf life quality of bunch tomatoes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 209-213.
  • Eltez, R. Z., Tüzel, Y., Tüzel, İ. H., Ayşe, Gül., Demirelli, A., 2002. Besleyici film tekniğinde (NFT) sürekli ve fasılalı akışın domates yetiştiriciliğinde verim, kalite ve su tüketimine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 39(1).
  • Ergun, V., Aktas, H. 2018. Effect of grafting on yield and fruit quality of pepper (Capsicum annuum L.) grown under open field conditions. Scientific Papers. Series B. Horticulture, 62:463-466.
  • Farooq, H., Bashir, M. A., Khalofah, A., Khan, K. A., Ramzan, M., Hussain, A., Ahmad, Z., 2021. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30(04), 3557-3564.
  • Fernández-Garcí, N., Martínez, V., Cerdá, A., & Carvajal, M. 2004. Fruit quality of grafted tomato plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 79(6), 995-1001.
  • Flores, F. B., Sanchez-Bel, P., Estañ, M. T., Martinez-Rodriguez, M. M., Moyano, E., Morales, B., Bolarín, M. C., 2010. The effectiveness of grafting to improve tomato fruit quality. Scientia horticulturae, 125(3), 211-217.
  • Geboloğlu, N., Yılmaz, E., Çakmak, P., Aydın, M., Kasap, Y., 2011. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6(10), 2147-2153.
  • Gerçekçioğlu, R., Asarkaya, U., Özatasever, Ö., 2019. ‘0900 Ziraat’Kiraz Çeşidinde Bor Uygulamasının Verim ve Meyve Kalitesine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 8(3), 120-129.
  • Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., Perica, S., 2008. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. The Journal of Agricultural Science, 146(6), 695-704.
  • Hoagland, D. R., Arnon, D. I., 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Jain, A. K., Sheline, R. K., Sood, P. C., Jain, K., 1990. Intrinsic states of deformed odd-A nuclei in the mass regions (151≤ A≤ 193) and (A≥ 221). Reviews of Modern Physics, 62(2), 393.
  • Jaksch, T., Kell, K., 1997. Grafting tomatoes ensures higher yields.
  • Kaymak, H.Ç., Güvenç, İ., Yarali, F., & Dönmez, M.F. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture and Forestry, 33(2), 173-179.
  • Keatinge, J. D. H., Lin, L. J., Ebert, A. W., Chen, W. Y., Hughes, J. A., Luther, G. C., Ravishankar, M., 2014. Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biological agriculture ve horticulture, 30(4), 272-287.
  • Kell, K., Jaksch, T., 1998. Comparison of rootstocks in tomato.
  • Krauss, S., Schnitzler, W. H., Grassmann, J., Woitke, M., 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry, 54(2), 441-448.
  • Kusvuran, S., Talhouni, M., & Ellialtioglu, S.S. 2019. Chapter Nineteen Overview on the Growth and Physiological Response of Grafted and Non-Grafted Vegetable Crops Under Salinity Stress. Trends in Landscape, Agriculture, Forest and Natural Science, 246.
  • Lee, J., Bang, H., Ham, H., 1997, October. Quality of cucumber fruit as affected by rootstock. In International Symposium on Vegetable Quality of Fresh and Fermented Vegetables 483 (pp. 117-124).
  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., Piernik, A., 2021. Ozmotik stres veya iyonik kompozisyon: Mahsul türlerinin erken gelişimini hangisi daha fazla etkiler? Tarım Bilimi , 11 (3), 435.
  • Martínez‐Carrasco, L., Brugarolas, M., Martínez‐Poveda, A., Ruiz, J. J., García‐Martínez, S., 2012. Modelling perceived quality of tomato by structural equation analysis. British Food Journal, 114(10), 1414-1431.
  • Martorana, M., Giuffrida, F., Leonardi, C., Kaya, S., 2006, February. Influence of rootstock on tomato response to salinity. In VIII International Symposium on Protected Cultivation in Mild Winter Climates: Advances in Soil and Soilless Cultivation under 747 (pp. 555-561).
  • Maync, A., 1999. Tomato cultivation in the unheated plastic tunnel-planting date, density, varieties.
  • Mills, D., Tal, M., 2004. The effect of ventilation on in vitro response of seedlings of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt stress. Plant cell, tissue and organ culture, 78, 209-216.
  • Minoia, S., Petrozza, A., D'Onofrio, O., Piron, F., Mosca, G., Sozio, G., Carriero, F., 2010. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC research notes, 3, 1-8.
  • Mitchell, JP, Shennan, C., Grattan, S.R., May, D.M., 1991. Su kıtlığı ve tuzluluk koşullarında domates meyve verim ve kalitesi. Amerikan Bahçe Bitkileri Bilimi Derneği Dergisi, 116 (2), 215-221.
  • Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Oda, M., Nagata, M., Tsuji, K., Sasaki, H., 1996. Effects of scarlet eggplant rootstock on growth, yield, and sugar content of grafted tomato fruits. Journal of the Japanese Society for Horticultural Science, 65(3), 531-536.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J., Lachaal, M., 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Öztekin, G, B, 2009. Aşılı domates bitkilerinde tuz stresine karşı anaçların etkisi. Ege Üniversitesi. Fen Bilimleri Enst. Doktora Tezi, 342.
  • Öztekin, G., Tüzel, Y., Gül, A., Tüzel, I. H., (2006, August). Effects of grafting in saline conditions. In XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 761 (pp. 349-355). Petro‐Turza, M. (1986). Flavor of tomato and tomato products. Food Reviews International, 2(3), 309-351.
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural resources forum (Vol. 38, No. 4, pp. 282-295).
  • Rasel, M., Tahjib-Ul-Arif, M., Hossain, M. A., Hassan, L., Farzana, S., Brestic, M., 2021. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. Journal of Plant Growth Regulation, 40, 1853-1868.
  • Rengasamy, P., 2006. World salinization with emphasis on Australia. Journal of experimental botany, 57(5), 1017-1023.
  • Riga, P., Benedicto, L., García-Flores, L., Villaño, D., Medina, S., ve Gil-Izquierdo, Á., 2016. Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 46, 50-59.
  • Rivero, R. M., Ruiz, J. M., Romero, L., 2003. Role of grafting in horticultural plants under stress conditions. Journal of food agriculture and environment, 1, 70-74.
  • Rouphael, Y., Schwarz, D., Krumbein, A., Colla, G., 2010. Impact of grafting on product quality of fruit vegetables. Scientia horticulturae, 127(2), 172-179.
  • Santa-Cruz, A., Acosta, M., Rus, A., Bolarin, M. C., 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology and Biochemistry, 37(1), 65-71.
  • Sato, S., Sakaguchi, S., Furukawa, H., Ikeda, H., 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia horticulturae, 109(3), 248-253.
  • Singh, H., Kumar, P., Kumar, A., Kyriacou, M. C., Colla, G., Rouphael, Y., 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy, 10(2), 263.
  • Squires, V. R., Glenn, E. P. 2011., Salination, desertification and soil erosion (Vol. 3, pp. 102-123). EOLSS Publications.
  • Turhan, A., Ozmen, N., Serbeci, M. S., Seniz, V., 2011. Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142-149.
  • Tüzel, Y., Duyar, H., Öztekin, G. B., Ayşe, G., (2009). Domates anaçlarının farklı dikim tarihlerinde bitki gelişimi, sıcaklık toplamı isteği, verim ve kaliteye etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 46(2), 79-92.
  • Wu, A. J., Andriotis, V. M., Durrant, M. C., Rathjen, J. P., 2004. A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase. The Plant Cell, 16(10), 2809-2821.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makaleleri
Yazarlar

Nurullah Bayram

Naif Gebeloğlu

Erken Görünüm Tarihi 6 Haziran 2024
Yayımlanma Tarihi 12 Haziran 2024
Gönderilme Tarihi 4 Nisan 2024
Kabul Tarihi 3 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 1

Kaynak Göster

APA Bayram, N., & Gebeloğlu, N. (2024). Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 13(1), 116-125.
AMA Bayram N, Gebeloğlu N. Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi. GBAD. Haziran 2024;13(1):116-125.
Chicago Bayram, Nurullah, ve Naif Gebeloğlu. “Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13, sy. 1 (Haziran 2024): 116-25.
EndNote Bayram N, Gebeloğlu N (01 Haziran 2024) Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13 1 116–125.
IEEE N. Bayram ve N. Gebeloğlu, “Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi”, GBAD, c. 13, sy. 1, ss. 116–125, 2024.
ISNAD Bayram, Nurullah - Gebeloğlu, Naif. “Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 13/1 (Haziran 2024), 116-125.
JAMA Bayram N, Gebeloğlu N. Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi. GBAD. 2024;13:116–125.
MLA Bayram, Nurullah ve Naif Gebeloğlu. “Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, c. 13, sy. 1, 2024, ss. 116-25.
Vancouver Bayram N, Gebeloğlu N. Aşılamanın Tuz Stresinde Domates Meyvesinin Bazı Kalite Parametreleri Üzerine Etkisi. GBAD. 2024;13(1):116-25.