Araştırma Makalesi
BibTex RIS Kaynak Göster

PATLAYICILAR İLE ATEŞLİ SİLAHLARIN KULLANIMINDAN KAYNAKLANAN KURŞUN VE BAKIR KİRLİLİĞİNİN GİDERİLMESİ

Yıl 2024, Cilt: 13 Sayı: 2, 437 - 454, 29.11.2024
https://doi.org/10.28956/gbd.1418922

Öz

Patlayıcı maddeler, askeri amaçlarla ve sivil mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Birincil patlayıcılar, daha az duyarlı ikincil patlayıcıları ateşleyebilmek için fünye ya da primer karışımlarında kullanılan ve alev, darbe, elektrik kıvılcımı, sürtünme ya da ısı gibi küçük bir etkiyle bir patlama dalgası oluşturabilen patlayıcılardır. Kurşun azid (Pb(N3)2), fünyelerde ya da primer karışımlarda halen günümüzün en yaygın kullanılan birincil patlayıcıları arasında yer alır. Yüksek maliyetli gümüş azid (AgN3) ve yüksek hassasiyetli bakır azidler (CuN3 ve Cu(N3)2) ise özel uygulamalarda kullanılmaktadır. Ateşli silahlar ve patlayıcıların kullanımıyla hava, toprak, yer üstü ve yer altı sularında metal kirliliği oluşur. Üstelik sadece kullanımla değil, üretim, paketleme, nakliye ve depolama aşamalarında da patlayıcılar çevre kirliliğine neden olarak insan ve diğer canlıların sağlığı için tehdit oluşturur. Bu nedenle kurşun ve bakırın sulardan uzaklaştırılması, çevresel sürdürülebilirlik ve insan sağlığı için oldukça önemlidir. Bu çalışmada kurşun ve bakır iyonlarının sulu ortamdan uzaklaştırılması araştırılmıştır. Farklı sıcaklık ve başlangıç konsantrasyonlarında likenden üretilen aktif karbon kullanılarak adsorpsiyon yöntemiyle deneyler gerçekleştirilmiştir. Giderim yüzdesi 25 oC’de ve 20 ppm başlangıç konsantrasyonunda kurşun ve bakır iyonları için sırasıyla % 81,40 ve % 80,30 olarak hesaplanmıştır. Sıcaklık 45 oC’ye yükseltildiğinde uzaklaştırma verimi kurşun için % 92,55 ve bakır için % 91,20 olmuştur.

Kaynakça

  • Afolabi, F. O., Musonge, P. ve Bakare, B. F. (2022). Adsorption of Copper and Lead Ions in a Binary System onto Orange Peels: Optimization, Equilibrium, and Kinetic Study. Sustainability, 14, 10860. https://doi.org/10.3390/su141710860
  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S.-E., Cho, J. S., Moon, D. H., Hashimoto, Y. ve Ok, Y.S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433-441. http://dx.doi.org/10.1016/j.chemosphere.2013.09.077
  • Aslanoğlu, S. Y., Öztürk, F. ve Güllü, G. (2022). Investigating ambient air quality of a shooting range during official national competitions. Environmental Research and Technology, 5(1),11-23. https://doi.org/10.35208/ert.998705
  • Fan, S., Sun, Y., Yang, T., Chen, Y., Yan, B., Li, R. ve Chen, G. (2020). Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb (II) removal potential, RSC Advances, 10, 6362-6376. https://doi.org/10.1039/C9RA09487C
  • Islam, M. N., Jung, H.-Y. ve Park, J.-H. (2015). Subcritical water treatment of explosive and heavy metals cocontaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, 262-269. http://dx.doi.org/10.1016/j.jenvman.2015.08.007
  • Ji, F., Yin, H., Zhang, H., Zhang, Y. ve Lai, B. (2018). Treatment of military primary explosives wastewater containing lead styphnate (LS) and lead azide (LA) by mFe0-PS-O3 process. Journal of Cleaner Production, 188, 860-870. https://doi.org/10.1016/j.jclepro.2018.04.029
  • Koyuncu, H. ve Kul, A.R. (2020a). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent, Applied Water Science, 10,72. https://doi.org/10.1007/s13201-020-1156-9
  • Koyuncu, H. ve Kul, A.R. (2020b). Biosorption study for removal of methylene blue dye from aqueous solution using a novel activated carbon obtained from nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), Surfaces and Interfaces, 19, 100527. https://doi.org/10.1016/j.surfin.2020.100527
  • Lee, M. E., Park, J. H., ve Chung, J. W. (2019). Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. Journal of Environmental Management, 236, 118-124. https://doi.org/10.1016/j.jenvman.2019.01.100
  • Li, X., Zhao, C. ve Zhang, M. (2019). Biochar for anionic contaminants removal from water, Biochar from Biomass and Waste, pp. 143-160.
  • Lin, S., Huang, W., Yang, H., Sun, S. ve Yu, J. (2020). Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents, Bioresource Technology, 314, 123749. https://doi.org/10.1016/j.biortech.2020.123749
  • Lin, Z., Li, F., Liu, X., ve Su, J. (2023). Preparation of corn starch/acrylic acid/itaconic acid ion exchange hydrogel and its adsorption properties for copper and lead ions in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131668. https://doi.org/10.1016/j.colsurfa.2023.131668
  • Maia, F. S., Marques, M. C., de Macedo, A. C., Matos, C. C. ve Maria Valderez Ponte Rocha, M. V. P. (2022). Analysis of gunshot residues from nontoxic ammunition: a contribution to health and environmental analysis. Journal of Environmental Science and Health, Part A, 57:6, 427-435. https://doi.org/10.1080/10934529.2022.2072152
  • Moon, D. H., Cheong, K. H., Khim, J., Wazne, M., Hyun, S., Park, J.-H., Chang, Y.-Y. ve Ok, Y.S. (2013). Stabilization of Pb2+ and Cu2+ contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere, 91, 1349–1354. http://dx.doi.org/10.1016/j.chemosphere.2013.02.007
  • Prabu, D., Parthiban, R., Senthil Kumar, P., Kumari, N. ve Saikia, P. (2016). Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut Shell, Desalination and Water Treatment, 57, 6487-6502. https://doi.org/10.1080/19443994.2015.1007488
  • Wurzenberger, M. H .H., Gruhne, M. S., Lommel, M., Szimhardt, N., ve Stierstorfer, J. (2022). Advancement and stabilization of copper(II) azide by the use of triazole- and tetrazole ligands – enhanced primary explosives. Materials Advances, 3, 579. https://doi.org/10.1039/d1ma00588j
  • Yin, X., Saha, U. K. ve Ma, L.Q. (2010). Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. Journal of Hazardous Materials, 179, 895-900. https://doi.org/10.1016/j.jhazmat.2010.03.089

REMOVAL OF LEAD AND COPPER POLLUTION CAUSED BY THE USE OF EXPLOSIVES AND FIREARMS

Yıl 2024, Cilt: 13 Sayı: 2, 437 - 454, 29.11.2024
https://doi.org/10.28956/gbd.1418922

Öz

Explosives are widely used for military purposes and civil engineering applications. Primary explosives are explosives that are used in detonators or primer mixtures to ignite less sensitive secondary explosives and can create a detonation wave with a small effect such as flame, impact, electric spark, friction, or heat. Lead azide (Pb(N3)2) is still among the most widely used primary explosives today, either in detonators or primer mixtures. High-cost silver azide (AgN3) and high-sensitivity copper azides (CuN3 and Cu(N3)2) are used in special applications. Metal pollution occurs in the air, soil, surface, and groundwater with the use of firearms and explosives. Moreover, explosives pose a threat to the health of humans and other living things by causing environmental pollution not only in use but also in the production, packaging, transportation, and storage stages. Therefore, removing lead and copper from water is very important for environmental sustainability and human health. In this study, the removal of lead and copper ions from aqueous media was investigated. Experiments were carried out by the adsorption method using activated carbon produced from lichen at different temperatures and initial concentrations. The removal percentage was calculated as 81.40% and 80.30% for lead and copper ions, respectively, at 25 oC and 20 ppm initial concentration. When the temperature was increased to 45 oC, the removal efficiency was 92.55 % for lead and 91.20 % for copper.

Kaynakça

  • Afolabi, F. O., Musonge, P. ve Bakare, B. F. (2022). Adsorption of Copper and Lead Ions in a Binary System onto Orange Peels: Optimization, Equilibrium, and Kinetic Study. Sustainability, 14, 10860. https://doi.org/10.3390/su141710860
  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S.-E., Cho, J. S., Moon, D. H., Hashimoto, Y. ve Ok, Y.S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95, 433-441. http://dx.doi.org/10.1016/j.chemosphere.2013.09.077
  • Aslanoğlu, S. Y., Öztürk, F. ve Güllü, G. (2022). Investigating ambient air quality of a shooting range during official national competitions. Environmental Research and Technology, 5(1),11-23. https://doi.org/10.35208/ert.998705
  • Fan, S., Sun, Y., Yang, T., Chen, Y., Yan, B., Li, R. ve Chen, G. (2020). Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb (II) removal potential, RSC Advances, 10, 6362-6376. https://doi.org/10.1039/C9RA09487C
  • Islam, M. N., Jung, H.-Y. ve Park, J.-H. (2015). Subcritical water treatment of explosive and heavy metals cocontaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, 262-269. http://dx.doi.org/10.1016/j.jenvman.2015.08.007
  • Ji, F., Yin, H., Zhang, H., Zhang, Y. ve Lai, B. (2018). Treatment of military primary explosives wastewater containing lead styphnate (LS) and lead azide (LA) by mFe0-PS-O3 process. Journal of Cleaner Production, 188, 860-870. https://doi.org/10.1016/j.jclepro.2018.04.029
  • Koyuncu, H. ve Kul, A.R. (2020a). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent, Applied Water Science, 10,72. https://doi.org/10.1007/s13201-020-1156-9
  • Koyuncu, H. ve Kul, A.R. (2020b). Biosorption study for removal of methylene blue dye from aqueous solution using a novel activated carbon obtained from nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), Surfaces and Interfaces, 19, 100527. https://doi.org/10.1016/j.surfin.2020.100527
  • Lee, M. E., Park, J. H., ve Chung, J. W. (2019). Comparison of the lead and copper adsorption capacities of plant source materials and their biochars. Journal of Environmental Management, 236, 118-124. https://doi.org/10.1016/j.jenvman.2019.01.100
  • Li, X., Zhao, C. ve Zhang, M. (2019). Biochar for anionic contaminants removal from water, Biochar from Biomass and Waste, pp. 143-160.
  • Lin, S., Huang, W., Yang, H., Sun, S. ve Yu, J. (2020). Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents, Bioresource Technology, 314, 123749. https://doi.org/10.1016/j.biortech.2020.123749
  • Lin, Z., Li, F., Liu, X., ve Su, J. (2023). Preparation of corn starch/acrylic acid/itaconic acid ion exchange hydrogel and its adsorption properties for copper and lead ions in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131668. https://doi.org/10.1016/j.colsurfa.2023.131668
  • Maia, F. S., Marques, M. C., de Macedo, A. C., Matos, C. C. ve Maria Valderez Ponte Rocha, M. V. P. (2022). Analysis of gunshot residues from nontoxic ammunition: a contribution to health and environmental analysis. Journal of Environmental Science and Health, Part A, 57:6, 427-435. https://doi.org/10.1080/10934529.2022.2072152
  • Moon, D. H., Cheong, K. H., Khim, J., Wazne, M., Hyun, S., Park, J.-H., Chang, Y.-Y. ve Ok, Y.S. (2013). Stabilization of Pb2+ and Cu2+ contaminated firing range soil using calcined oyster shells and waste cow bones. Chemosphere, 91, 1349–1354. http://dx.doi.org/10.1016/j.chemosphere.2013.02.007
  • Prabu, D., Parthiban, R., Senthil Kumar, P., Kumari, N. ve Saikia, P. (2016). Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut Shell, Desalination and Water Treatment, 57, 6487-6502. https://doi.org/10.1080/19443994.2015.1007488
  • Wurzenberger, M. H .H., Gruhne, M. S., Lommel, M., Szimhardt, N., ve Stierstorfer, J. (2022). Advancement and stabilization of copper(II) azide by the use of triazole- and tetrazole ligands – enhanced primary explosives. Materials Advances, 3, 579. https://doi.org/10.1039/d1ma00588j
  • Yin, X., Saha, U. K. ve Ma, L.Q. (2010). Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. Journal of Hazardous Materials, 179, 895-900. https://doi.org/10.1016/j.jhazmat.2010.03.089
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Suç
Bölüm Makaleler
Yazarlar

Hülya Koyuncu 0000-0002-6756-4973

Yayımlanma Tarihi 29 Kasım 2024
Gönderilme Tarihi 12 Ocak 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Koyuncu, H. (2024). PATLAYICILAR İLE ATEŞLİ SİLAHLARIN KULLANIMINDAN KAYNAKLANAN KURŞUN VE BAKIR KİRLİLİĞİNİN GİDERİLMESİ. Güvenlik Bilimleri Dergisi, 13(2), 437-454. https://doi.org/10.28956/gbd.1418922

24347   14728   14731   14739   


Bu dergi creative commons Atıf-GayriTicari 4.0 Uluslararası lisansı ile lisanslanmıştır.   29846