Araştırma Makalesi
BibTex RIS Kaynak Göster

Gemilerde Kullanılan Termik Yağ Sisteminin Performans Analizleri

Yıl 2022, , 196 - 208, 13.01.2023
https://doi.org/10.54926/gdt.1210117

Öz

Enerji verimliliği günümüzde giderek önem kazanmaktadır. Enerji verimliliğinin arttırılması ile yakıt tüketimi ve çevreye zararlı olan etkileri azaltmak mümkün olmaktadır. Ayrıca yakıt fiyatlarının önümüzdeki yıllarda artan trend göstermesi öngörülmektedir. Gemilerde uygulanan enerji verimliliği uygulamalarında enerji kaybının yaklaşık %25'ini oluşturan ekzoz gazından enerji kazanım yöntemleri öne çıkmaktadır. Gemilerde atık egzoz baca gazı enerjisini geri kazanmak için ekonomizer kullanılmaktadır. Bu çalışmanın amacı, ekonomizer ana kazanın ön ısıtıcısı olarak çalışırken, termik yağ sisteminin performans, maliyet ve çevresel etki analizlerini gerçekleştirmektir. Bu kapsamda ana makinesi 4350 kW, kazanı 1500 kW ve ekonomizeri 340 kW olan bir gemi ele alınmıştır. Sonuç olarak, incelenen sistemde, termik yağ olarak Syltherm XLT ve yakıt olarak da VLSFO’nun kullanılması ile hem yakıt maliyeti açısından tasarrufun sağlandığı hem de SOx salımlarının azaldığı görülmüştür.

Kaynakça

  • Akman, M. (2017). Bir Petrol Tankeri İçin Organik Rankıne Çevrimi Atık Isı Geri Kazanım Sisteminin Termodinamik Analizi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi]. http://hdl.handle.net/11527/15805
  • Akman, M., & Ergin, S. (2019). An investigation of marine waste heat recovery system based on organic Rankine cycle under various engine operating conditions. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 233(2), 586-601. https://doi.org/10.1177/1475090218770947
  • Akman, M., & Ergin, S. (2021). Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships and Offshore Structures, 16(10), 1104-1113. https://doi.org/10.1080/17445302.2020.1816744
  • Aygül, Ö., & Baştuğ, S. (2020). Deniz Taşımacılığı Kaynaklı Hava Kirliliği ve İnsan Sağlığına Etkisi. Journal of Maritime Transport and Logistics, 1(1), Art. 1.
  • Başhan, V., & Kökkülünk, G. (2020). Exergoeconomic and air emission analyses for marine refrigeration with waste heat recovery system: A case study. Journal of Marine Engineering & Technology, 19(3), 147-160. https://doi.org/10.1080/20464177.2019.1656324
  • Bogdanowicz, A., & Kniaziewicz, T. (2020). Marine Diesel Engine Exhaust Emissions Measured in Ship’s Dynamic Operating Conditions. Sensors (Basel, Switzerland), 20(22), 6589. https://doi.org/10.3390/s20226589
  • CEAS engine calculations. (2022). MAN Energy Solutions. https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations
  • Çolak, S. (2015). Gemi İşletmeciliğinde Kimyasal Tanker Ve Kuru Yük Gemisi Yatırım Analizleri [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi]. http://hdl.handle.net/11527/9028
  • Deli̇baş, H. M., & Kayabaşı, E. (2021). Energy, environment and economy assessment of waste heat recovery technologies in marine industry. The International Journal of Materials and Engineering Technology, 4(2), Art. 2.
  • Dincer, I., & Al-Muslim, H. (2001). Thermodynamic analysis of reheat cycle steam power plants. International Journal of Energy Research, 25(8), 727-739. https://doi.org/10.1002/er.717
  • Domingues, A., Santos, H., & Costa, M. (2013). Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle. Energy, 49, 71-85. https://doi.org/10.1016/j.energy.2012.11.001
  • Dzida, M. (2009). On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine—Steam turbine mode of cooperation. Polish Maritime Research, 16(1), 47-52. https://doi.org/10.2478/v10012-008-0010-z
  • El-Taybany, A., Moustafa, M. M., Mansour, M., & Tawfik, A. A. (2019). Quantification of the exhaust emissions from seagoing ships in Suez Canal waterway. Alexandria Engineering Journal, 58(1), 19-25. https://doi.org/10.1016/j.aej.2018.11.016
  • Güneş, Ü. (2013). Gemilerde atık ısı geri kazanım yöntemlerinin teknik ve ekonomik yönden incelenmesi [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi]. http://dspace.yildiz.edu.tr/xmlui/handle/1/2702
  • Güneş, Ü., & Karakurt, A. S. (2015). Exergy And Economic Analysis Of Dual Pressure Waste Heat Recovery Boiler. International Journal of Advances in Mechanical and Civil Engineering, 2(5), 41-43.
  • Heat system design. (2022). https://heatmaster.nl/heat-system-design
  • IMO. (2018). Initial IMO GHG Strategy. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx
  • Kiliç, A. (2009). Marmara Denizi’nde Gemilerden Kaynaklanan Egzoz Emisyonları. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), Art. 2.
  • Kökkülünk, G., Başhan, V., Kaya, A., Sönmez, H., & Sarica, A. (2017, Aralık 21). Design and Calculation of the Waste Heat Recovery Potential for a Bulk Carrier Marine Diesel Generator. 3rd Conference on Advances in Mechanical Engineering, ISTANBUL.
  • Köroğlu, T., & Söğüt, O. S. (2017). Advanced exergy analysis of an organic Rankine cycle waste heat recovery system of a marine power plant. Journal of Thermal Engineering, 3(2), Art. 2. https://doi.org/10.18186/thermal.298614
  • Ma, Z., Yang, D., & Guo, Q. (2012). Conceptual Design and Performance Analysis of an Exhaust Gas Waste Heat Recovery System for a 10000TEU Container Ship. Polish Maritime Research, 19(2), 31-38. https://doi.org/10.2478/v10012-012-0012-8
  • Marine Fuel and Lubricants: IndianOil. (2022). https://iocl.com/marine-oils
  • Nugroho, T. F., Busse, W., Wardhana, E. M., & Panggabean, J. I. O. (2020). Heat Transfer Analysis of Thermal Oil Plant on Fuel Oil Tanks of 17500 LTDW Product Oil Tanker. International Journal of Marine Engineering Innovation and Research, 2(2), Art. 2. https://doi.org/10.12962/j25481479.v2i2.2615
  • Rotterdam Bunker Prices. (2022, Kasım 24). Ship & Bunker. https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam
  • Saraçoğlu, H., Deniz, C., & Kılıç, A. (2013). An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey. The Scientific World Journal, 2013, e218324. https://doi.org/10.1155/2013/218324
  • Shell Thermia Oil D. (2022). Southern Lubricants. https://www.southernlubricants.co.uk/lube-library/shell-thermia-oil-d/
  • SYLTHERMTM XLT. (2022). https://www.dow.com/en-us/pdp.syltherm-xlt-heat-transfer-fluid.23834z.html
  • Therminol Heat Transfer Fluids. (2022). https://www.therminol.com/resources/fluid-selection
  • XCELTHERM® 600. (2022). Radco Ind. https://www.radcoind.com/fluid/xceltherm-600/

Performance Analyses of Marine Thermal Oil System

Yıl 2022, , 196 - 208, 13.01.2023
https://doi.org/10.54926/gdt.1210117

Öz

Energy efficiency is getting more and more important nowadays. By increasing energy efficiency, it is possible to reduce fuel consumption and harmful effects on the environment. In addition, fuel prices are expected to show an increasing trend in the coming years. In energy efficiency applications applied on ships, energy recovery methods from the exhaust gas, which constitutes approximately 25% of energy loss, come to the fore. Economizers are used to recovering the waste exhaust flue gas energy in ships. The aim of this study is to perform performance, cost, and environmental impact analyses of the hot oil system while the economizer is working as the preheater of the main boiler. In this context, a ship with the main engine (4350 kW), boiler (1500 kW) and economizer (340 kW) is considered. As a result, it has been observed that the use of Syltherm XLT as thermal oil and VLSFO as fuel in the examined system provides both savings in terms of fuel costs and reduced SOX emissions.

Kaynakça

  • Akman, M. (2017). Bir Petrol Tankeri İçin Organik Rankıne Çevrimi Atık Isı Geri Kazanım Sisteminin Termodinamik Analizi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi]. http://hdl.handle.net/11527/15805
  • Akman, M., & Ergin, S. (2019). An investigation of marine waste heat recovery system based on organic Rankine cycle under various engine operating conditions. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 233(2), 586-601. https://doi.org/10.1177/1475090218770947
  • Akman, M., & Ergin, S. (2021). Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships and Offshore Structures, 16(10), 1104-1113. https://doi.org/10.1080/17445302.2020.1816744
  • Aygül, Ö., & Baştuğ, S. (2020). Deniz Taşımacılığı Kaynaklı Hava Kirliliği ve İnsan Sağlığına Etkisi. Journal of Maritime Transport and Logistics, 1(1), Art. 1.
  • Başhan, V., & Kökkülünk, G. (2020). Exergoeconomic and air emission analyses for marine refrigeration with waste heat recovery system: A case study. Journal of Marine Engineering & Technology, 19(3), 147-160. https://doi.org/10.1080/20464177.2019.1656324
  • Bogdanowicz, A., & Kniaziewicz, T. (2020). Marine Diesel Engine Exhaust Emissions Measured in Ship’s Dynamic Operating Conditions. Sensors (Basel, Switzerland), 20(22), 6589. https://doi.org/10.3390/s20226589
  • CEAS engine calculations. (2022). MAN Energy Solutions. https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations
  • Çolak, S. (2015). Gemi İşletmeciliğinde Kimyasal Tanker Ve Kuru Yük Gemisi Yatırım Analizleri [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi]. http://hdl.handle.net/11527/9028
  • Deli̇baş, H. M., & Kayabaşı, E. (2021). Energy, environment and economy assessment of waste heat recovery technologies in marine industry. The International Journal of Materials and Engineering Technology, 4(2), Art. 2.
  • Dincer, I., & Al-Muslim, H. (2001). Thermodynamic analysis of reheat cycle steam power plants. International Journal of Energy Research, 25(8), 727-739. https://doi.org/10.1002/er.717
  • Domingues, A., Santos, H., & Costa, M. (2013). Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle. Energy, 49, 71-85. https://doi.org/10.1016/j.energy.2012.11.001
  • Dzida, M. (2009). On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine—Steam turbine mode of cooperation. Polish Maritime Research, 16(1), 47-52. https://doi.org/10.2478/v10012-008-0010-z
  • El-Taybany, A., Moustafa, M. M., Mansour, M., & Tawfik, A. A. (2019). Quantification of the exhaust emissions from seagoing ships in Suez Canal waterway. Alexandria Engineering Journal, 58(1), 19-25. https://doi.org/10.1016/j.aej.2018.11.016
  • Güneş, Ü. (2013). Gemilerde atık ısı geri kazanım yöntemlerinin teknik ve ekonomik yönden incelenmesi [Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi]. http://dspace.yildiz.edu.tr/xmlui/handle/1/2702
  • Güneş, Ü., & Karakurt, A. S. (2015). Exergy And Economic Analysis Of Dual Pressure Waste Heat Recovery Boiler. International Journal of Advances in Mechanical and Civil Engineering, 2(5), 41-43.
  • Heat system design. (2022). https://heatmaster.nl/heat-system-design
  • IMO. (2018). Initial IMO GHG Strategy. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx
  • Kiliç, A. (2009). Marmara Denizi’nde Gemilerden Kaynaklanan Egzoz Emisyonları. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), Art. 2.
  • Kökkülünk, G., Başhan, V., Kaya, A., Sönmez, H., & Sarica, A. (2017, Aralık 21). Design and Calculation of the Waste Heat Recovery Potential for a Bulk Carrier Marine Diesel Generator. 3rd Conference on Advances in Mechanical Engineering, ISTANBUL.
  • Köroğlu, T., & Söğüt, O. S. (2017). Advanced exergy analysis of an organic Rankine cycle waste heat recovery system of a marine power plant. Journal of Thermal Engineering, 3(2), Art. 2. https://doi.org/10.18186/thermal.298614
  • Ma, Z., Yang, D., & Guo, Q. (2012). Conceptual Design and Performance Analysis of an Exhaust Gas Waste Heat Recovery System for a 10000TEU Container Ship. Polish Maritime Research, 19(2), 31-38. https://doi.org/10.2478/v10012-012-0012-8
  • Marine Fuel and Lubricants: IndianOil. (2022). https://iocl.com/marine-oils
  • Nugroho, T. F., Busse, W., Wardhana, E. M., & Panggabean, J. I. O. (2020). Heat Transfer Analysis of Thermal Oil Plant on Fuel Oil Tanks of 17500 LTDW Product Oil Tanker. International Journal of Marine Engineering Innovation and Research, 2(2), Art. 2. https://doi.org/10.12962/j25481479.v2i2.2615
  • Rotterdam Bunker Prices. (2022, Kasım 24). Ship & Bunker. https://shipandbunker.com/prices/emea/nwe/nl-rtm-rotterdam
  • Saraçoğlu, H., Deniz, C., & Kılıç, A. (2013). An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey. The Scientific World Journal, 2013, e218324. https://doi.org/10.1155/2013/218324
  • Shell Thermia Oil D. (2022). Southern Lubricants. https://www.southernlubricants.co.uk/lube-library/shell-thermia-oil-d/
  • SYLTHERMTM XLT. (2022). https://www.dow.com/en-us/pdp.syltherm-xlt-heat-transfer-fluid.23834z.html
  • Therminol Heat Transfer Fluids. (2022). https://www.therminol.com/resources/fluid-selection
  • XCELTHERM® 600. (2022). Radco Ind. https://www.radcoind.com/fluid/xceltherm-600/
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Asım Sinan Karakurt 0000-0002-6205-9089

Burak Başaran 0000-0001-8332-1421

Engin Ziya Çubukçu Bu kişi benim 0000-0003-3897-1489

Yayımlanma Tarihi 13 Ocak 2023
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Karakurt, A. S., Başaran, B., & Çubukçu, E. Z. (2023). Gemilerde Kullanılan Termik Yağ Sisteminin Performans Analizleri. Gemi Ve Deniz Teknolojisi(222), 196-208. https://doi.org/10.54926/gdt.1210117