Investigation of Pitch and Heave Motion by Using CFD
Yıl 2023,
, 92 - 116, 24.08.2023
Yavuz Hakan Ozdemir
,
Taner Çoşgun
Öz
This study investigates a ship's two degrees of freedom pitch and heave motion with the aid of Computational Fluid Dynamics (CFD). The behavior of a surface combatant for varying Froude numbers and wave amplitudes modelled using RANS equations. The commercial CFD solver Simcenter Star CCM+ was utilized in computations. The solution methodology and the evaluation process of the numerical results was presented in detail. The results was investigated in terms of time varying displacements, frequency responses of the motions, dominant amplitudes, transfer functions and the free surface deformations. Furthermore, the resonance case of the ship was determined. The transfer functions obtained from CFD analyzes were compared with those of the strip theory, and the compatibility of the methods was examined.
Kaynakça
- Carrica, Pablo M, Fu, H., Stern, F., (2011). Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship ( KCS ) model. Appl. Ocean Res. 33, 309–320. https://doi.org/10.1016/j.apor.2011.07.003
- Carrica, Pablo M., Fu, H., Stern, F., (2011). Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309–320. https://doi.org/10.1016/j.apor.2011.07.003
- Castiglione, T., Stern, F., Bova, S., Kandasamy, M., (2011). Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean Eng. 38, 1806–1822. https://doi.org/10.1016/j.oceaneng.2011.09.003
- Fossen, T.I., (1996). Guidance and control of ocean vehicles. Automatica. https://doi.org/10.1016/0005-1098(96)82331-4
- Frank, (1967). Oscillation of Cylinders in or Below the Free Surface of Deep Fluids.
- Havelock, T.H., S., (1928). The Wave Pattern of a Doublet in a Stream. Procs. R. Soc. 121, 515–523.
- Hirt, C.W., Nichols, B.D., (1981). Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 39, 201–225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
- Irvine, M., Longo, J., Stern, F., (2008). Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves. J. Sh. Res. 52, 146–153. https://doi.org/10.5957/jsr.2008.52.2.146
- ITTC, (2011). Practical Guidelines for Ship CFD Applications. ITTC – Recomm. Proced. Guidel. ITTC 1–8.
- Journee, J.M.J., (1992). Experiments and Calculations on Four Wigley Hullforms.
- Kahramanoğlu, E., Çakıcı, F., Doğrul, A., (2020). Numerical prediction of the vertical responses of planing hulls in regular head waves. J. Mar. Sci. Eng. 8, 1–18. https://doi.org/10.3390/jmse8060455
- Launder, B.E., Spalding, D.B., (1974). The Numerical Computation of Turbulent Flows. Compt. Methods Apply. Mech. Eng. 3, 269–289.
- Lewis, F.M., (1929). No Title. Trans. Soc. Nav. Archit. Mar. Eng. 27, 1–20.
- Lewis, E. V., (1989). Principles of Naval Architecture. The Society of Naval Architects and Marine Engineers, New York.
- LLoyd, A.R.J.M., (1989). Seakeeping: Ship Behaviour in Rough Water. Chichester, UK.
- Özdemir, Y.H., (2014). Gemi Direncinin ve Hareketlerinin Hesaplamalı Akışkanlar Dinamiği Kullanılarak İncelenmesi. Yıldız Teknik Üniversitesi.
- Ozdemir, Y.H., Barlas, B., (2017). Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model. Int. J. Nav. Archit. Ocean Eng. 9, 149–159. https://doi.org/10.1016/j.ijnaoe.2016.09.001
- Özdemir, Y.H., Barlas, B., (2018). Free Surface Flow Simulation Around an Appended Hull. BRODOGRADNJA 69, 25–41.
- Özdemir, Y.H., Barlas, B., Yilmaz, T., Bayraktar, S., (2013). Numerical and Experimental Study of Turbulent Free Surface Flow for a Fast Ship Model. BRODOGRADNJA 65, 39–54.
- Panahi, R., Jahanbakhsh, E., Seif, M.S., (2009). Towards simulation of 3D nonlinear high-speed vessels motion. Ocean Eng. 36, 256–265. https://doi.org/10.1016/j.oceaneng.2008.11.005
- Patankar, S. V., Spalding, D.B., (1972). A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows. Int. J. Heat Mass Transf. 15, 17–87.
- Sato, Y., Miyata, H., Sato, T., (1999). CFD simulation of 3-dimensional motion of a ship in waves : application to an advancing ship in regular heading waves 108–116.
- Şener, B., (2012). Fırkateyn Tipi Tekne Serisi Geliştirilmesi ve Hidrodinamik form Optimizasyonu. Yıldız Teknik Üniversitesi.
- Ursell, F., (1949). On the heaving motion of a circular cylinder in the surface of a fluid. Quart. J. Mech. Appl. Math 2, 218–231.
- Versteeg, H.K., Malalasekera, W., (1996). An Introduction to Computational Fluid Dynamics The Finite Volume MethodNo Title. Longman Scientific and Technical, London UK.
- Wackers, J., Koren, B., Raven, H.C., van der Ploeg, A., Starke, A.R., Deng, G.B., Queutey, P., Visonneau, M., Hino, T., Ohashi, K., (2011). Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics. Arch. Comput. Methods Eng. 18, 1–41. https://doi.org/10.1007/s11831-011-9059-4
- Wilcox, D.C., (1998). Turbulence Modeling for CFD, 2nd ed. ed. La Canada Flintridge,CA, USA, DCW Industries Inc.
Baş-Kıç Vurma ve Dalıp-Çıkma Hareketinin HAD Yöntemi Kullanılarak İncelenmesi
Yıl 2023,
, 92 - 116, 24.08.2023
Yavuz Hakan Ozdemir
,
Taner Çoşgun
Öz
Bu çalışmada bir geminin iki serbestlik dereceli baş-kıç vurma ve dalıp-çıkma hareketleri Hesaplamalı Akışkanlar Dinamiği (HAD) yardımıyla incelenmiştir. Sayısal çözümlerde bir savaş gemisinin farklı Froude sayıları ve dalga genliklerindeki davranışı RANS denklemleri kullanılarak modellenmiştir. HAD analizleri STAR CCM+ ticari kodu ile gerçekleştirilmiş hem modelleme yöntemi hem de elde edilen sayısal sonuçların işlenme teknikleri her aşamada ayrıntılı olarak açıklanmıştır. Sonuçlar zamana bağlı yer değiştirmeler, hareketlerin frekans cevapları, baskın genlikler, transfer fonksiyonları ve serbest yüzey deformasyonları yönünden incelenmiş, ayrıca geminin rezonans durumu da tespit edilerek incelemeye dahil edilmiştir. HAD analizlerinden elde transfer fonksiyonları dilim teorisinden elde edilen sonuçlarla karşılaştırılarak kullanılan yöntemlerin uyumu incelenmiştir.
Kaynakça
- Carrica, Pablo M, Fu, H., Stern, F., (2011). Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship ( KCS ) model. Appl. Ocean Res. 33, 309–320. https://doi.org/10.1016/j.apor.2011.07.003
- Carrica, Pablo M., Fu, H., Stern, F., (2011). Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309–320. https://doi.org/10.1016/j.apor.2011.07.003
- Castiglione, T., Stern, F., Bova, S., Kandasamy, M., (2011). Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean Eng. 38, 1806–1822. https://doi.org/10.1016/j.oceaneng.2011.09.003
- Fossen, T.I., (1996). Guidance and control of ocean vehicles. Automatica. https://doi.org/10.1016/0005-1098(96)82331-4
- Frank, (1967). Oscillation of Cylinders in or Below the Free Surface of Deep Fluids.
- Havelock, T.H., S., (1928). The Wave Pattern of a Doublet in a Stream. Procs. R. Soc. 121, 515–523.
- Hirt, C.W., Nichols, B.D., (1981). Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 39, 201–225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
- Irvine, M., Longo, J., Stern, F., (2008). Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves. J. Sh. Res. 52, 146–153. https://doi.org/10.5957/jsr.2008.52.2.146
- ITTC, (2011). Practical Guidelines for Ship CFD Applications. ITTC – Recomm. Proced. Guidel. ITTC 1–8.
- Journee, J.M.J., (1992). Experiments and Calculations on Four Wigley Hullforms.
- Kahramanoğlu, E., Çakıcı, F., Doğrul, A., (2020). Numerical prediction of the vertical responses of planing hulls in regular head waves. J. Mar. Sci. Eng. 8, 1–18. https://doi.org/10.3390/jmse8060455
- Launder, B.E., Spalding, D.B., (1974). The Numerical Computation of Turbulent Flows. Compt. Methods Apply. Mech. Eng. 3, 269–289.
- Lewis, F.M., (1929). No Title. Trans. Soc. Nav. Archit. Mar. Eng. 27, 1–20.
- Lewis, E. V., (1989). Principles of Naval Architecture. The Society of Naval Architects and Marine Engineers, New York.
- LLoyd, A.R.J.M., (1989). Seakeeping: Ship Behaviour in Rough Water. Chichester, UK.
- Özdemir, Y.H., (2014). Gemi Direncinin ve Hareketlerinin Hesaplamalı Akışkanlar Dinamiği Kullanılarak İncelenmesi. Yıldız Teknik Üniversitesi.
- Ozdemir, Y.H., Barlas, B., (2017). Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model. Int. J. Nav. Archit. Ocean Eng. 9, 149–159. https://doi.org/10.1016/j.ijnaoe.2016.09.001
- Özdemir, Y.H., Barlas, B., (2018). Free Surface Flow Simulation Around an Appended Hull. BRODOGRADNJA 69, 25–41.
- Özdemir, Y.H., Barlas, B., Yilmaz, T., Bayraktar, S., (2013). Numerical and Experimental Study of Turbulent Free Surface Flow for a Fast Ship Model. BRODOGRADNJA 65, 39–54.
- Panahi, R., Jahanbakhsh, E., Seif, M.S., (2009). Towards simulation of 3D nonlinear high-speed vessels motion. Ocean Eng. 36, 256–265. https://doi.org/10.1016/j.oceaneng.2008.11.005
- Patankar, S. V., Spalding, D.B., (1972). A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows. Int. J. Heat Mass Transf. 15, 17–87.
- Sato, Y., Miyata, H., Sato, T., (1999). CFD simulation of 3-dimensional motion of a ship in waves : application to an advancing ship in regular heading waves 108–116.
- Şener, B., (2012). Fırkateyn Tipi Tekne Serisi Geliştirilmesi ve Hidrodinamik form Optimizasyonu. Yıldız Teknik Üniversitesi.
- Ursell, F., (1949). On the heaving motion of a circular cylinder in the surface of a fluid. Quart. J. Mech. Appl. Math 2, 218–231.
- Versteeg, H.K., Malalasekera, W., (1996). An Introduction to Computational Fluid Dynamics The Finite Volume MethodNo Title. Longman Scientific and Technical, London UK.
- Wackers, J., Koren, B., Raven, H.C., van der Ploeg, A., Starke, A.R., Deng, G.B., Queutey, P., Visonneau, M., Hino, T., Ohashi, K., (2011). Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics. Arch. Comput. Methods Eng. 18, 1–41. https://doi.org/10.1007/s11831-011-9059-4
- Wilcox, D.C., (1998). Turbulence Modeling for CFD, 2nd ed. ed. La Canada Flintridge,CA, USA, DCW Industries Inc.