Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental and Numerical Investigation of Free Surface Effect on Vortex-Induced Vibrations of Circular Cylinders

Yıl 2024, , 90 - 106, 30.06.2024
https://doi.org/10.54926/gdt.1458453

Öz

Vortex-induced vibrations (VIV) occur as a nonlinear flow-structure interaction phenomenon on various types of structures, ranging from offshore structures to stationary and floating platforms. VIV phenomenon usually leads to structural damage and instability. However, recent studies have focused on harnessing this phenomenon directly for renewable energy generation or developing devices for various purposes. In this study, effects of free surface conditions were examined on VIV at high Reynolds numbers—a common challenge faced by researches aiming both to avoid the destructive effects or harnessing the benefits of VIV. To achieve this, the findings of experimental and numerical investigations on the VIV of a circular cylinder located near the free surface are presented. Initially, the VIV performance of a cylinder positioned sufficiently far from the free surface was experimentally measured. Subsequently, the same cylinder was gradually brought closer to the surface until its uppermost point aligns with the still free water level. While keeping experimental parameters such as mass ratio, spring stiffness, and Reynolds number constant for the condition where the cylinder produced the highest oscillation amplitudes, only the water depth was gradually altered. The flow characteristics around the moving cylinder and its VIV performance under each new condition have been interpreted. The study demonstrates that the oscillation amplitude, and frequency of the circular cylinder experiencing VIV under free surface effects can be controlled and adjusted based on the water depth. These findings have implications for various potential applications, including offshore wind turbines, wave energy converters, hydrogen production, and solar energy facilities, making them safer and more sustainable in open sea environments. In the study, the proposed numerical method, parametric analysis, and main results are presented in detail.

Kaynakça

  • Akaydin, H. D., Elvin, N., & Andreopoulos, Y. (2010). Energy harvesting from highly unsteady fluid flows using piezoelectric materials. Journal of Intelligent Material Systems and Structures, 21(13), 1263–1278.
  • Bernitsas, M. M., & Raghavan, K. (2005). Fluid Motion Energy Converter. In United States Patent and Trademark Office Patent# 7,493,759 B2.
  • Chung, M. H. (2016). Two-degree-of-freedom vortex induced vibration of low-mass horizontal circular cylinder near a free surface at low Reynolds number. International Journal of Heat and Fluid Flow, 57, 58-78.
  • Dai, H. L., Abdelkefi, A., Yang, Y., & Wang, L. (2016). Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters, 108(5), 053902.
  • Duranay, A., & Kınacı, Ö. K. (2020). Enhancing two-dimensional computational approach for vortex-induced vibrations by scaling lift force. Ocean Engineering, 217, 107620.
  • Duranay, A., Usta, O., & Kınacı, Ö. K. (2021). Systematic investigation of the tip effects on vortex-induced vibrations for circular cylinders. Ocean Engineering, 239, 109829.
  • Duranay, A., Kınacı, Ö. K., & Bernitsas, M. M. (2022). Effect of aspect ratio on hydrokinetic energy harnessing using cylinders in VIV. Journal of Ocean Engineering and Marine Energy, 8(2), 217-232.
  • Duranay, A., Demirhan, A. E., Dobrucali, E., & Kinaci, O. K. (2023). A review on vortex-induced vibrations in confined flows. Ocean Engineering, 285, 115309.
  • Duranay, A. (2024). Numerical and experimental investigation of vortex formation modes on a freely vibrating circular cylinder at high Reynolds numbers. Applied Ocean Research, 144, 103909.
  • Feng, C. C., (1968). The measurements of vortex-induced effects in flow past a stationary and oscillating circular and d-section cylinders, University of British Columbia, Yüksek Lisans Tezi, Vancouver, Kanada.
  • Fredsoe, J., & Sumer, B. M. (1997). Hydrodynamics around cylindrical structures (Vol. 12). World Scientific.
  • Govardhan, R., & Williamson, C. (2000). Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420, 85-130.
  • Ji, C., Xu, W., Sun, H., Wang, R., Ma, C., & Bernitsas, M. M. (2018). Interactive flow-induced vibrations of two staggered, low mass-ratio cylinders in the TrSL3 Flow Regime (2.5× 104< Re< 1.2× 105): Smooth Cylinders. Journal of Offshore Mechanics and Arctic Engineering, 140(4), 041801.
  • Kınacı, Ö. K., 2016a, Girdap kaynaklı titreşimler. GMO Journal of Ship and Marine Technology, 22(206), 51-65.
  • Kınacı, Ö.K., 2016b. 2-D URANS simulations of vortex induced vibrations of circular cylinder at Trsl3 flow regime. J. Appl. Fluid Mech. 9 (5), 2537–2544. Kınacı, Ö. K., Lakka, S., Sun, H., & Bernitsas, M. M. (2016). Effect of tip-flow on vortex induced vibration of circular cylinders for Re< 1.2* 105. Ocean engineering, 117, 130-142.
  • Kınacı, Ö. K., & Gökçe, M. K. (2020). Akımla kendi kendini tahrik eden pompa (TPE 2015 17104).
  • Kınacı, Ö. K., Demirhan, A. E., & Duranay, A. (2022). Vortex-induced vibrations of a single-degree-of-freedom circular cylinder in the vicinity of the free surface. Applied Ocean Research, 124, 103202.
  • Lakka, S. (2013). Flowmeter based on vibration induced by vortices, Doktora Tezi, Lempäälä, Finlandiya.
  • Lee, J. H., Bernitsas, M. M. (2011). High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engineering, 38, s. 1697-1712.
  • Mandelli, S., Muggiasca, S., Malavasi, S (2016). Pressure field and wake modes analysis of an oscillating cylinder. Ocean Engineering 124, 74–83.
  • Martins, F. A. C., & Avila, J. P. J. (2019). Effects of the Reynolds number and structural damping on vortex-induced vibrations of elastically-mounted rigid cylinder. International Journal of Mechanical Sciences, 156, 235-249.
  • Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1598-1605.
  • Rahman, M. A. A. (2015). Vortex-induced Vibration of Circular Cylindrical Structure with Different Aspect Ratios (Doktora Tezi).
  • Reichl, P., Hourigan, K., & Thompson, M. C. (2005). Flow past a cylinder close to a free surface. Journal of Fluid Mechanics, 533, 269-296.
  • STAR-CCM+. User Guide. CD-Adapco Inc., USA.
  • Schulz, K. W., & Kallinderis, Y. (2000). Numerical prediction of the hydrodynamic loads and vorte-induced vibrations of offshore structures. Journal of Offshore Mechanics and Arctic Engineering, 122(4), 289–293.
  • Sumer, B. M., Fredsoe, J. (1997). Hydrodynamics around cylindrical structures, World Scientific, Singapur.
  • Usta, O., & Duranay, A. (2020). Uncertainty analysis of experiments of vortex-induced vibrations for circular cylinders. Journal of Applied Fluid Mechanics, 14(2).
  • Ünal, U., Atlar, M., Gören, Ö. (2010). Effect of turbulence modelling on the computation of the near-wake flow of a circular cylinder. Ocean Eng. 37 (4), 387–399.
  • Yüksel, Y. (2011). Deniz tabanı hidrodinamiği ve kıyı morfolojisi:(Planlama ve tasarım), Beta, İstanbul.
  • Zdravkovich, M. M. (2003). Flow Around Circular Cylinders. New York: Oxford University Press.

Dairesel Silindirlerin Girdap Kaynaklı Titreşimlerine Serbest Su Yüzeyi Etkisinin Deneysel ve Sayısal Olarak İncelenmesi

Yıl 2024, , 90 - 106, 30.06.2024
https://doi.org/10.54926/gdt.1458453

Öz

Girdap kaynaklı titreşimler (GKT), çeşitli yapı tiplerinde, açık deniz yapılarından durağan ve yüzen platformlara kadar, lineer olmayan bir akış–yapı etkileşimi fenomeni olarak karşımıza çıkmakta ve bu durum genellikle yapısal hasara ve istikrarsızlığa neden olmaktadır. Ancak, son yıllarda yapılan bazı GKT çalışmaları, fenomeni doğrudan yenilenebilir enerji üretimi için kullanmaya ya da çeşitli şekillerde yararlanmak amacıyla cihazlar geliştirmeye odaklanmıştır. Bu çalışmada, GKT’nin hem yıkıcı–tahrip edici özelliklerinden kaçınmaya hem de fenomenden yararlanmayı amaçlayan araştırmaların sıklıkla karşılaştığı ortak problemlerden biri olan serbest su yüzeyi etkisini yüksek Reynolds sayılarında inceleme amaçlanmıştır. Bu amaçla, serbest yüzeye yakın bir konumda bulunan dairesel bir silindirin GKT'si üzerine yapılan sayısal ve deneysel araştırmaların bulguları sunulmakta ve tartışılmaktadır. Çalışmada öncelikle, serbest su yüzeyinden yeterince uzakta konumlandırılan bir silindirin GKT performansı deneysel olarak verilmiştir. Ardından aynı silindir kademeli olarak yüzeye yaklaştırılmış ve sonunda sakin suda silindir üst noktası serbest su yüzeyi hizasında olacak şekilde konumlandırılmıştır. Serbest su yüzeyinden yeterince uzakta olduğu koşulda en yüksek genlik ürettiği kenetlenme durumundaki kütle oranı, yay sabiti, Reynolds sayısı gibi deneysel parametreler sabit tutularak sadece su içindeki derinliği değiştirilmiş ve her yeni koşul için hareketli silindir etrafındaki akış özelliklerine ve GKT performansına izahat getirilmiştir. Çalışma, serbest yüzey etkisi altında GKT hareketi gözlemlenen dairesel silindirin salınım genliğinin, frekansının ve faz farkının su içindeki derinliğine bağlı olarak kontrol edilebileceğini ve düzenlenebileceğini göstermektedir. Bu bulgular, açık denizde yerleştirilen rüzgâr türbinleri, dalga enerjisi üreteçleri, hidrojen ve güneş enerjisi tesisleri gibi birçok potansiyel uygulamanın daha güvenli ve uzun ömürlü olmasına sağlamasına katkı sağlayacak niteliktedir. Çalışmada, önerilen sayısal yöntem, parametrik analiz ve ana sonuçlar detaylı bir şekilde sunulmaktadır.

Teşekkür

Bu çalışmanın deneysel testleri, 2023 yılında İTÜ Ata Nutku Gemi Model Deney Laboratuvarı’nda yer alan sirkülasyon kanalında Araştırma Görevlisi Yüksek Mühendis Alkın Erdal Demirhan’ın değerli katkılarıyla tamamlanmıştır. Kendisine teşekkürlerimi sunarım.

Kaynakça

  • Akaydin, H. D., Elvin, N., & Andreopoulos, Y. (2010). Energy harvesting from highly unsteady fluid flows using piezoelectric materials. Journal of Intelligent Material Systems and Structures, 21(13), 1263–1278.
  • Bernitsas, M. M., & Raghavan, K. (2005). Fluid Motion Energy Converter. In United States Patent and Trademark Office Patent# 7,493,759 B2.
  • Chung, M. H. (2016). Two-degree-of-freedom vortex induced vibration of low-mass horizontal circular cylinder near a free surface at low Reynolds number. International Journal of Heat and Fluid Flow, 57, 58-78.
  • Dai, H. L., Abdelkefi, A., Yang, Y., & Wang, L. (2016). Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters, 108(5), 053902.
  • Duranay, A., & Kınacı, Ö. K. (2020). Enhancing two-dimensional computational approach for vortex-induced vibrations by scaling lift force. Ocean Engineering, 217, 107620.
  • Duranay, A., Usta, O., & Kınacı, Ö. K. (2021). Systematic investigation of the tip effects on vortex-induced vibrations for circular cylinders. Ocean Engineering, 239, 109829.
  • Duranay, A., Kınacı, Ö. K., & Bernitsas, M. M. (2022). Effect of aspect ratio on hydrokinetic energy harnessing using cylinders in VIV. Journal of Ocean Engineering and Marine Energy, 8(2), 217-232.
  • Duranay, A., Demirhan, A. E., Dobrucali, E., & Kinaci, O. K. (2023). A review on vortex-induced vibrations in confined flows. Ocean Engineering, 285, 115309.
  • Duranay, A. (2024). Numerical and experimental investigation of vortex formation modes on a freely vibrating circular cylinder at high Reynolds numbers. Applied Ocean Research, 144, 103909.
  • Feng, C. C., (1968). The measurements of vortex-induced effects in flow past a stationary and oscillating circular and d-section cylinders, University of British Columbia, Yüksek Lisans Tezi, Vancouver, Kanada.
  • Fredsoe, J., & Sumer, B. M. (1997). Hydrodynamics around cylindrical structures (Vol. 12). World Scientific.
  • Govardhan, R., & Williamson, C. (2000). Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420, 85-130.
  • Ji, C., Xu, W., Sun, H., Wang, R., Ma, C., & Bernitsas, M. M. (2018). Interactive flow-induced vibrations of two staggered, low mass-ratio cylinders in the TrSL3 Flow Regime (2.5× 104< Re< 1.2× 105): Smooth Cylinders. Journal of Offshore Mechanics and Arctic Engineering, 140(4), 041801.
  • Kınacı, Ö. K., 2016a, Girdap kaynaklı titreşimler. GMO Journal of Ship and Marine Technology, 22(206), 51-65.
  • Kınacı, Ö.K., 2016b. 2-D URANS simulations of vortex induced vibrations of circular cylinder at Trsl3 flow regime. J. Appl. Fluid Mech. 9 (5), 2537–2544. Kınacı, Ö. K., Lakka, S., Sun, H., & Bernitsas, M. M. (2016). Effect of tip-flow on vortex induced vibration of circular cylinders for Re< 1.2* 105. Ocean engineering, 117, 130-142.
  • Kınacı, Ö. K., & Gökçe, M. K. (2020). Akımla kendi kendini tahrik eden pompa (TPE 2015 17104).
  • Kınacı, Ö. K., Demirhan, A. E., & Duranay, A. (2022). Vortex-induced vibrations of a single-degree-of-freedom circular cylinder in the vicinity of the free surface. Applied Ocean Research, 124, 103202.
  • Lakka, S. (2013). Flowmeter based on vibration induced by vortices, Doktora Tezi, Lempäälä, Finlandiya.
  • Lee, J. H., Bernitsas, M. M. (2011). High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engineering, 38, s. 1697-1712.
  • Mandelli, S., Muggiasca, S., Malavasi, S (2016). Pressure field and wake modes analysis of an oscillating cylinder. Ocean Engineering 124, 74–83.
  • Martins, F. A. C., & Avila, J. P. J. (2019). Effects of the Reynolds number and structural damping on vortex-induced vibrations of elastically-mounted rigid cylinder. International Journal of Mechanical Sciences, 156, 235-249.
  • Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1598-1605.
  • Rahman, M. A. A. (2015). Vortex-induced Vibration of Circular Cylindrical Structure with Different Aspect Ratios (Doktora Tezi).
  • Reichl, P., Hourigan, K., & Thompson, M. C. (2005). Flow past a cylinder close to a free surface. Journal of Fluid Mechanics, 533, 269-296.
  • STAR-CCM+. User Guide. CD-Adapco Inc., USA.
  • Schulz, K. W., & Kallinderis, Y. (2000). Numerical prediction of the hydrodynamic loads and vorte-induced vibrations of offshore structures. Journal of Offshore Mechanics and Arctic Engineering, 122(4), 289–293.
  • Sumer, B. M., Fredsoe, J. (1997). Hydrodynamics around cylindrical structures, World Scientific, Singapur.
  • Usta, O., & Duranay, A. (2020). Uncertainty analysis of experiments of vortex-induced vibrations for circular cylinders. Journal of Applied Fluid Mechanics, 14(2).
  • Ünal, U., Atlar, M., Gören, Ö. (2010). Effect of turbulence modelling on the computation of the near-wake flow of a circular cylinder. Ocean Eng. 37 (4), 387–399.
  • Yüksel, Y. (2011). Deniz tabanı hidrodinamiği ve kıyı morfolojisi:(Planlama ve tasarım), Beta, İstanbul.
  • Zdravkovich, M. M. (2003). Flow Around Circular Cylinders. New York: Oxford University Press.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deniz Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Aytekin Duranay 0000-0002-9551-3508

Erken Görünüm Tarihi 3 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 25 Mart 2024
Kabul Tarihi 17 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Duranay, A. (2024). Dairesel Silindirlerin Girdap Kaynaklı Titreşimlerine Serbest Su Yüzeyi Etkisinin Deneysel ve Sayısal Olarak İncelenmesi. Gemi Ve Deniz Teknolojisi(225), 90-106. https://doi.org/10.54926/gdt.1458453