Araştırma Makalesi
BibTex RIS Kaynak Göster

Cytotoxic and Antiproliferative Effects of Fusaric Acid on Human Prostate Cancer Cell Lines PC-3 and LNCaP

Yıl 2025, Cilt: 35 Sayı: 6, 1266 - 1279, 31.12.2025
https://doi.org/10.54005/geneltip.1742631

Öz

Aim:
Fusaric acid (FA), a secondary metabolite derived from Fusarium species and structurally similar to picolinic acid, has recently attracted increasing interest due to its potential anticancer properties. This study aimed to investigate the cytotoxic, antiproliferative, apoptotic, and oxidative effects of FA on human prostate cancer cell lines PC-3 and LNCaP under in vitro conditions.
Methods:
PC-3 and LNCaP cells were exposed to increasing concentrations of FA and incubated for 48 hours. Cell viability was assessed using the XTT assay, and IC₅₀ values were calculated. Expression levels of apoptosis-related genes (CASP3, CASP8, CASP9, CASP10, BAX, BID, and BCL-2) were analyzed by quantitative real-time PCR (qRT-PCR). Proliferative and migratory behaviors were evaluated using colony formation and wound healing assays, respectively. Oxidative stress was assessed by measuring total oxidant status (TOS), total antioxidant status (TAS), and calculating the oxidative stress index (OSI).
Results:
The IC₅₀ values of FA were determined as 262.94 µM for PC-3 cells and 278.72 µM for LNCaP cells. FA treatment significantly increased the expression of pro-apoptotic genes, while reducing the expression of the anti-apoptotic gene BCL-2. Colony-forming capacity was markedly reduced following FA exposure, with no significant enhancement in wound closure. TOS levels significantly decreased in LNCaP cells, while OSI values declined in both cell lines. No statistically significant changes were observed in TAS levels.
Conclusion:
This study demonstrates that fusaric acid exerts pronounced antiproliferative and pro-apoptotic effects on prostate cancer cells, potentially through the modulation of oxidative stress. These findings support the potential use of FA as a therapeutic candidate in prostate cancer treatment.

Etik Beyan

This research involved in vitro experiments using commercially obtained human prostate cancer cell lines (PC-3 and LNCaP). As no human participants or live animals were involved, ethics committee approval was not required in accordance with institutional and international guidelines regarding cell culture-based studies.

Destekleyen Kurum

This research received no financial support from any academic, institutional, or commercial source.

Teşekkür

The authors have no acknowledgments to report for this study.

Kaynakça

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.
  • 2. Beier AMK, Puhr M, Stope MB, Thomas C, Erb HHH. Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol. 2023;149(5):2259-70.
  • 3. Miyahira AK, Sharp A, Ellis L, Jones J, Kaochar S, Larman HB, et al. Prostate cancer research: the next generation; report from the 2019 Coffey‐Holden prostate cancer academy meeting. Prostate. 2020;80(2):113-32.
  • 4. Takayama KI. Splicing factors have an essential role in prostate cancer progression and androgen receptor signaling. Biomolecules. 2019;9(4):131.
  • 5. Bach C, Pisipati S, Daneshwar D, Wright M, Rowe E, Gillatt D, et al. The status of surgery in the management of high-risk prostate cancer. Nat Rev Urol. 2014;11(6):342-51.
  • 6. Mans DR, Rocha AB, Schwartsmann G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist. 2000;5(3):185-98.
  • 7. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701-11.
  • 8. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730.
  • 9. Okaiyeto K, Oguntibeju OO. African herbal medicines: adverse effects and cytotoxic potentials with different therapeutic applications. Int J Environ Res Public Health. 2021;18(11):5988.
  • 10. Singh VK, Upadhyay RS. Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Bot Stud. 2014;55:66.
  • 11. Ghazi T, Nagiah S, Tiloke C, Abdul NS, Chuturgoon AA. Fusaric acid induces DNA damage and post‐translational modifications of p53 in human hepatocellular carcinoma (HepG2) cells. J Cell Biochem. 2017;118(11):3866-74.
  • 12. Gulbay G, Secme M, Mutlu D. Fusaric acid inhibits cell proliferation and downregulates expressions of toll-like receptors pathway genes in Ishikawa endometrial cancer cells. Eur Rev Med Pharmacol Sci. 2023;27(16):7431-7436.
  • 13. Zhang J, Yuan H, Li W, Chen S, Liu S, Li C, et al. Fusaric acid inhibits proliferation and induces apoptosis through triggering endoplasmic reticulum stress in MCF-7 human breast cancer cells. Mycotoxin Res. 2023;39(4):347-64.
  • 14. Seçme M, Urgancı ABE, Üzen R, Aslan A, Tıraş F. Determination of the effects of fusaric acid, a mycotoxin, on cytotoxicity, gamma-H2AX, 8-hydroxy-2-deoxyguanosine and DNA repair gene expressions in pancreatic cancer cells. Toxicon. 2023;231:107179.
  • 15. Oh C, Kang H. The effectiveness and harms of PSA-based prostate cancer screening: A systematic review. Healthcare (Basel). 2025;13(12):1381.
  • 16. Rebbeck TR, Devesa SS, Chang BL, Bunker CH, Cheng I, Cooney K, et al. Global patterns of prostate cancer incidence, aggressiveness, and mortality in men of African descent. Prostate Cancer. 2013;2013:560857.
  • 17. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339-349.
  • 18. Gamat M, McNeel DG. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr Relat Cancer. 2017;24(12):T297-310.
  • 19. Ghazi T, Nagiah S, Naidoo P, Chuturgoon AA. Fusaric acid-induced promoter methylation of DNA methyltransferases triggers DNA hypomethylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics. 2019;14(8):804-17.
  • 20. Devnarain N, Tiloke C, Nagiah S, Chuturgoon AA. Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon. 2017;126:4-11.
  • 21. Ye J, Montero M, Stack BC Jr. Effects of fusaric acid treatment on HEp2 and docetaxel-resistant HEp2 laryngeal squamous cell carcinoma. Chemotherapy. 2013;59(2):121-8.
  • 22. Hong SH, Choi YS, Cho HJ, Lee JY, Kim JC, Hwang TK, et al. Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chin J Cancer Res. 2012;24:124-129.
  • 23. Tang Y, Yu F, Zhang G, Yang Z, Huang F, Ding G. A purified serine protease from Nereis virens and its impaction of apoptosis on human lung cancer cells. Molecules. 2017;22(7):1123.
  • 24. Tülüce Y, Keleş AY, Köstekci S. Assessment of redox homeostasis via genotoxicity, cytotoxicity, apoptosis and NRF-2 in colorectal cancer cell lines after treatment with Ganoderma lucidum extract. Drug Chem Toxicol. 2024;47(5):693-709.
  • 25. Tülüce Y, Lak PTA, Koyuncu İ, Kılıç A, Durgun M, Özkol H. The apoptotic, cytotoxic and genotoxic effect of novel binuclear boron-fluoride complex on endometrial cancer. Biometals. 2017;30:933-944.
  • 26. Hilal B, Eldem A, Oz T, Pehlivan M, Pirim I. Boric acid affects cell proliferation, apoptosis, and oxidative stress in ALL cells. Biol Trace Elem Res. 2024;202(8):3614-3622.
  • 27. Hazman Ö. Effects of crocin on inflammation and oxidative stress mediated apoptosis in breast cancer (MCF-7) cells. AKU J. Sci. Eng. 2021;21(6):1295-305.

Fusarik Asidin İnsan Prostat Kanseri Hücre Hatları PC-3 ve LNCaP Üzerindeki Sitotoksik ve Antiproliferatif Etkileri

Yıl 2025, Cilt: 35 Sayı: 6, 1266 - 1279, 31.12.2025
https://doi.org/10.54005/geneltip.1742631

Öz

Amaç:
Pikolinik asit ile yapısal benzerlik gösteren ve Fusarium türlerinden türetilen sekonder bir metabolit olan fusarik asit (FA), son yıllarda antikanser etkileri nedeniyle dikkat çeken bileşikler arasında yer almaktadır. Bu çalışmada, FA’nın insan prostat kanseri hücre hatları olan PC-3 ve LNCaP üzerindeki sitotoksik, antiproliferatif, apoptotik ve oksidatif etkilerinin in vitro koşullarda değerlendirilmesi amaçlanmıştır.
Gereç ve Yöntemler:
PC-3 ve LNCaP hücreleri, farklı dozlarda FA ile 48 saat süreyle inkübe edilmiştir. Hücre canlılığı, XTT testi ile değerlendirilerek IC₅₀ değerleri hesaplanmıştır. Apoptoz ile ilişkili genlerin (CASP3, CASP8, CASP9, CASP10, BAX, BID, BCL-2) ekspresyon düzeyleri kantitatif RT-PCR (qRT-PCR) yöntemiyle analiz edilmiştir. Hücrelerin proliferatif kapasitesi koloni oluşum analiziyle, migrasyon yetenekleri ise yara iyileşme (scratch) testiyle belirlenmiştir. Oksidatif stres durumu, total oksidan seviye (TOS), total antioksidan seviye (TAS) ve oksidatif stres indeksi (OSI) hesaplanarak değerlendirilmiştir.
Bulgular:
FA’nın IC₅₀ değeri PC-3 hücreleri için 262,94 µM, LNCaP hücreleri için ise 278,72 µM olarak bulunmuştur. FA uygulaması, pro-apoptotik gen ekspresyonlarını anlamlı düzeyde artırırken, anti-apoptotik BCL-2 geninde düşüşe neden olmuştur. Koloni oluşumu belirgin şekilde azalırken, yara kapanmasında anlamlı bir iyileşme gözlenmemiştir. TOS düzeyleri LNCaP hücrelerinde anlamlı şekilde azalmış, OSI değerleri her iki hücre hattında da düşmüştür. TAS düzeylerinde ise istatistiksel olarak anlamlı bir değişiklik saptanmamıştır.
Sonuç:
Bu çalışma, fusarik asidin prostat kanseri hücrelerinde belirgin antiproliferatif, pro-apoptotik ve oksidatif stres düzenleyici etkiler gösterdiğini ortaya koymakta olup, FA’nın prostat kanseri tedavisinde potansiyel bir aday olabileceğini desteklemektedir.

Etik Beyan

Bu çalışma, ticari olarak temin edilen insan prostat kanseri hücre hatları (PC-3 ve LNCaP) kullanılarak in vitro koşullarda gerçekleştirilmiştir. Çalışmada insan katılımcı veya canlı hayvan kullanılmadığı için, hücre kültürü temelli araştırmalar kapsamında etik kurul onayı gerekmemektedir.

Destekleyen Kurum

Bu araştırma, herhangi bir akademik, kurumsal veya ticari kaynaktan finansal destek almamıştır.

Teşekkür

Yazarlar bu çalışma ile ilgili herhangi bir teşekkür bildiriminde bulunmamaktadır.

Kaynakça

  • 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49.
  • 2. Beier AMK, Puhr M, Stope MB, Thomas C, Erb HHH. Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol. 2023;149(5):2259-70.
  • 3. Miyahira AK, Sharp A, Ellis L, Jones J, Kaochar S, Larman HB, et al. Prostate cancer research: the next generation; report from the 2019 Coffey‐Holden prostate cancer academy meeting. Prostate. 2020;80(2):113-32.
  • 4. Takayama KI. Splicing factors have an essential role in prostate cancer progression and androgen receptor signaling. Biomolecules. 2019;9(4):131.
  • 5. Bach C, Pisipati S, Daneshwar D, Wright M, Rowe E, Gillatt D, et al. The status of surgery in the management of high-risk prostate cancer. Nat Rev Urol. 2014;11(6):342-51.
  • 6. Mans DR, Rocha AB, Schwartsmann G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist. 2000;5(3):185-98.
  • 7. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701-11.
  • 8. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730.
  • 9. Okaiyeto K, Oguntibeju OO. African herbal medicines: adverse effects and cytotoxic potentials with different therapeutic applications. Int J Environ Res Public Health. 2021;18(11):5988.
  • 10. Singh VK, Upadhyay RS. Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Bot Stud. 2014;55:66.
  • 11. Ghazi T, Nagiah S, Tiloke C, Abdul NS, Chuturgoon AA. Fusaric acid induces DNA damage and post‐translational modifications of p53 in human hepatocellular carcinoma (HepG2) cells. J Cell Biochem. 2017;118(11):3866-74.
  • 12. Gulbay G, Secme M, Mutlu D. Fusaric acid inhibits cell proliferation and downregulates expressions of toll-like receptors pathway genes in Ishikawa endometrial cancer cells. Eur Rev Med Pharmacol Sci. 2023;27(16):7431-7436.
  • 13. Zhang J, Yuan H, Li W, Chen S, Liu S, Li C, et al. Fusaric acid inhibits proliferation and induces apoptosis through triggering endoplasmic reticulum stress in MCF-7 human breast cancer cells. Mycotoxin Res. 2023;39(4):347-64.
  • 14. Seçme M, Urgancı ABE, Üzen R, Aslan A, Tıraş F. Determination of the effects of fusaric acid, a mycotoxin, on cytotoxicity, gamma-H2AX, 8-hydroxy-2-deoxyguanosine and DNA repair gene expressions in pancreatic cancer cells. Toxicon. 2023;231:107179.
  • 15. Oh C, Kang H. The effectiveness and harms of PSA-based prostate cancer screening: A systematic review. Healthcare (Basel). 2025;13(12):1381.
  • 16. Rebbeck TR, Devesa SS, Chang BL, Bunker CH, Cheng I, Cooney K, et al. Global patterns of prostate cancer incidence, aggressiveness, and mortality in men of African descent. Prostate Cancer. 2013;2013:560857.
  • 17. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339-349.
  • 18. Gamat M, McNeel DG. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr Relat Cancer. 2017;24(12):T297-310.
  • 19. Ghazi T, Nagiah S, Naidoo P, Chuturgoon AA. Fusaric acid-induced promoter methylation of DNA methyltransferases triggers DNA hypomethylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics. 2019;14(8):804-17.
  • 20. Devnarain N, Tiloke C, Nagiah S, Chuturgoon AA. Fusaric acid induces oxidative stress and apoptosis in human cancerous oesophageal SNO cells. Toxicon. 2017;126:4-11.
  • 21. Ye J, Montero M, Stack BC Jr. Effects of fusaric acid treatment on HEp2 and docetaxel-resistant HEp2 laryngeal squamous cell carcinoma. Chemotherapy. 2013;59(2):121-8.
  • 22. Hong SH, Choi YS, Cho HJ, Lee JY, Kim JC, Hwang TK, et al. Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chin J Cancer Res. 2012;24:124-129.
  • 23. Tang Y, Yu F, Zhang G, Yang Z, Huang F, Ding G. A purified serine protease from Nereis virens and its impaction of apoptosis on human lung cancer cells. Molecules. 2017;22(7):1123.
  • 24. Tülüce Y, Keleş AY, Köstekci S. Assessment of redox homeostasis via genotoxicity, cytotoxicity, apoptosis and NRF-2 in colorectal cancer cell lines after treatment with Ganoderma lucidum extract. Drug Chem Toxicol. 2024;47(5):693-709.
  • 25. Tülüce Y, Lak PTA, Koyuncu İ, Kılıç A, Durgun M, Özkol H. The apoptotic, cytotoxic and genotoxic effect of novel binuclear boron-fluoride complex on endometrial cancer. Biometals. 2017;30:933-944.
  • 26. Hilal B, Eldem A, Oz T, Pehlivan M, Pirim I. Boric acid affects cell proliferation, apoptosis, and oxidative stress in ALL cells. Biol Trace Elem Res. 2024;202(8):3614-3622.
  • 27. Hazman Ö. Effects of crocin on inflammation and oxidative stress mediated apoptosis in breast cancer (MCF-7) cells. AKU J. Sci. Eng. 2021;21(6):1295-305.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Neziha Senem Arı 0000-0003-2926-6892

Elif Önder 0000-0002-7187-1669

Mücahit Seçme 0000-0002-2084-760X

Gönderilme Tarihi 15 Temmuz 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 35 Sayı: 6

Kaynak Göster

Vancouver Arı NS, Önder E, Seçme M. Cytotoxic and Antiproliferative Effects of Fusaric Acid on Human Prostate Cancer Cell Lines PC-3 and LNCaP. Genel Tıp Derg. 2025;35(6):1266-79.