BibTex RIS Kaynak Göster

Gestasyonel diyabet gelişiminde KCNJ11 geninin rolü

Yıl 2015, Cilt: 25 Sayı: 4, 116 - 121, 01.12.2015

Öz

Amaç: Gestasyonel Diabetes Mellitus GDM değişik şiddette hiperglisemi ile sonuçlanan gebelik sırasında başlamış veya ilk defa gebelik sırasında fark edilmiş olan herhangi bir düzeydeki glukoz tolerans bozukluğudur. Bu çalışmada, Tip 2 Diabetes Mellitus T2DM ’a geçiş sürecinin önemli belirleyicisi olan GDM’nin ortaya çıkmasında genetik yatkınlık oluşturabileceği düşünülen Kir6.2 kanal proteinini kodlayan KCNJ11 geninin toplumumuzdaki GDM’li bireylerde taranması ve tek nükleotid polimorfizmlerinin SNP belirlenerek hastalıkla ilişkileri bakımından değerlendirilmesi amaçlandı. Gereç ve yöntem: Çalışmaya Selçuk Üniversitesi Tıp Fakültesi İç Hastalıkları Anabilim Dalı Endokrinoloji Bilim Dalı’na başvurarak GDM tanısı konmuş 74 gebe birey ve kontrol grubu için 49 sağlıklı gebe birey dahil edildi. KCNJ11 geninin kodlanan bölgesinin tamamı Polimeraz Zincir Reaksiyonu PZR ile çoğaltılarak çift yönlü dizi analizi ile değerlendirildi. İstatistiki analizlerde p

Kaynakça

  • Turok DK, Ratcliffe SD, Baxley AG. Management of gestational diabetes mellitus. Am Fam Physician 2003;68:1769-72.
  • Azal Ö. Gestasyonel Diabetes Mellitus’un Etiyopatogenezi. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Turkiye Klinikleri J Endocrin 2010;3:6-13.
  • Sönmez A, Kutlu M. Gestasyonel diyabet güncel tarama ve tanı yöntemleri. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Turkiye Klinikleri J Endocrin 2010;3:1-5.
  • Ahmad A, Vora JP. Management of diabetes during labour. In: Krentz AJ, ed. Emergencies In Diabetes. John Wiley & Sons Ltd, 2004;157-63.
  • Canbaz B, Dinççağ N. Diyabetli gebede perinatal sonlanımlar, fetal ve maternal komplikasyonlar, doğumun yönetimi. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Türkiye Klinikleri J Endocrin 2010;3:31-40.
  • Dinççağ N. Gebelik ve diyabet. Diyabet Bilim Derg 2008;6:208-17.
  • Zimmet P, Shaw J. A global problem: Diabetes. In: Kahn R et al, eds. Joslin’s diabetes mellitus. 14th ed. Lippincott Williams & Wil- kins, Boston Philadelphia, 2005; 525-9.
  • Powes AC. Diabetes Mellitus. In: Longo DL et al, eds. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill, 2012;2968-3003.
  • Kwak SH, Kim HS, Choi SH, et al. Subsequent pregnancy after ges- tational diabetes mellitus: frequency and risk factors for recurren- ce in Korean women. Diabetes Care 2008;31:1867-71.
  • Schäfer SA, Machicao F, Fritsche A, Häring HU, Kantartzis K. New type 2 diabetes risk genes provide new insights in insülin secretion mechanisms. Diabetes Res Clin Pract 2011;93:9-24.
  • Nestorowicz A, Inagaki N, Gonoi T. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997;46:1743-8.
  • Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 1998;41:1511-5.
  • Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. Plos Biol 2003;1:E20.
  • Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel su- bunit Kir6.2 and permanent neonatal diabetes. New Eng J Med 2004;350:1838-49. Note: Erratum: New Eng J Med 2004;351:1470.
  • Hansen SK, Nielsen E-M D, Ek J, et al. Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J Clin Endocr Metab 2005;90:3629-37.
  • Massa O, Iafusco D, D’Amato E, et al. KCNJ11 activating muta- tions in Italian patients with permanent neonatal diabetes. Hum Mutat 2005;25:22-7.
  • Sladek R, Rocheleau G, Rung J, et al. A genome-wide associ- ation study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881-5.
  • Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638-45.
  • Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105-16.
  • Qiu L, Na R, Xu R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. Plos One 2014;9:e93961.
  • Coustan DR, Carpenter MW. The diagnosis of gestational diabe- tes. Diabetes Care 1998;21:5-8.
  • Gloyn AL, McCarthy MI. The genetics of type 2 diabetes. Best Pra- ct Res Clin Endocrinol Metab 2001;15:293-308.
  • Weires MB, Tausch B, Haug PJ, et al. Familiality of diabetes melli- tus. Exp Clin Endocrinol Diabetes 2007;115:634-40.
  • Inagaki N, Gonoi T, Clement JP. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor Science 1995;270:1166-70.
  • Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 poly- morphism predisposes to type 2 diabetes by inducing overacti- vity of pancreatic β-cell ATP-sensitive K(+) channels. Diabetes 2002;51:875-9.
  • Nielsen EM, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin respon- se and increased risk of type 2 diabetes. Diabetes 2003;52:573-7.
  • Liu Z, Zhang YW, Feng QP, et al. [Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006;28:124-8.
  • Sakamoto Y, Inoue H, Keshavarz P, et al. SNPs in the KCNJ11-A- BCC8 gene locus are associated with type 2 diabetes and blo- od pressure levels in the Japanese population. J Hum Genet 2007;52:781-93.
  • Chavali S, Mahajan A, Tabassum R, et al. Association of variants in genes involved in pancreatic beta-cell development and function with type 2 diabetes in North Indians. J Hum Genet 2011;56:695- 700.
  • Koo BK, Cho YM, Park BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med 2007;24:178-86.
  • Gonen MS, Arikoglu H, Erkoc Kaya D, et al. Effects of single nuc- leotide polymorphisms in K(ATP) channel genes on type 2 diabe- tes in a Turkish population. Arch Med Res 2012;43:317-23.
  • Shaat N, Ekelund M, Lernmark A, et al. Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mel- litus. Diabetologia 2005;48:2544–51.
  • Lauenborg J, Grarup N, Damm P, et al. Common type 2 diabetes risk gene variants associate with gestational diabetes, J Clin En- docrinol Metab 2009;94:145-50.
  • Mao H, Li Q, Gao S. Meta-Analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabe- tes mellitus. Plos One 2012;7:1-7.
  • Zhang C, Bao W, Rong Y, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 2013;19:376-90.
  • Pappa KI, Gazouli M, Economou K, et al. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol Endocrinol 2011;27:267-72.
  • Cho YM, Kim TH, Lim S, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean populati- on. Diabetologia 2009;52:253-61.
  • Ekelund M, Shaat N, Almgren P, et al. Genetic prediction of post- partum diabetes in women with gestational diabetes mellitus. Dia- betes Res Clin Pract 2012;97:394-8.

The role of KCNJ11 gene in the development of gestational diabetes

Yıl 2015, Cilt: 25 Sayı: 4, 116 - 121, 01.12.2015

Öz

Objectives: Gestational Diabetes Mellitus GDM is impaired glucose tolerance at any level, which began during pregnancy or was noticed for the first time during pregnancy resulting in varying degrees of hyperglycemia. In this study, we aimed to scan the KCNJ11 gene encodes Kir6.2 channel protein, thought to make susceptible to GDM which is important determinant of Type 2 Diabetes Mel- litus T2DM transition, and to evaluate the associations with the disease by determining the single nucleotid polymorphisms SNP . Material and methods: Seventy four pregnant diagnosed as GDM and 49 healthy pregnant for control group from Department of Endocrinology Faculty of Medicine Selcuk University were included in our study. The whole coding region of the KCNJ11 gene was amplified by Polymerase Chain Reaction PCR and was evaluated by two-way sequencing analysis. In statistical analyzes, p0.05 . Statistical analysis could not be performed for L267L and L270V polymorphisms because of their low frequency. Conclusion: No association was determined between GDM and the polymorphisms in KCNJ11 which have shown in the genetic basis of T2DM in many populations until today. With this study for the first time the effect of KCNJ11 gene on genetic basis of GDM was investigated and presented a basic work for subsequent studies

Kaynakça

  • Turok DK, Ratcliffe SD, Baxley AG. Management of gestational diabetes mellitus. Am Fam Physician 2003;68:1769-72.
  • Azal Ö. Gestasyonel Diabetes Mellitus’un Etiyopatogenezi. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Turkiye Klinikleri J Endocrin 2010;3:6-13.
  • Sönmez A, Kutlu M. Gestasyonel diyabet güncel tarama ve tanı yöntemleri. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Turkiye Klinikleri J Endocrin 2010;3:1-5.
  • Ahmad A, Vora JP. Management of diabetes during labour. In: Krentz AJ, ed. Emergencies In Diabetes. John Wiley & Sons Ltd, 2004;157-63.
  • Canbaz B, Dinççağ N. Diyabetli gebede perinatal sonlanımlar, fetal ve maternal komplikasyonlar, doğumun yönetimi. İçinde: Kutlu M, ed. Gestasyonel Diabetes Mellitus Özel Sayısı. Türkiye Klinikleri J Endocrin 2010;3:31-40.
  • Dinççağ N. Gebelik ve diyabet. Diyabet Bilim Derg 2008;6:208-17.
  • Zimmet P, Shaw J. A global problem: Diabetes. In: Kahn R et al, eds. Joslin’s diabetes mellitus. 14th ed. Lippincott Williams & Wil- kins, Boston Philadelphia, 2005; 525-9.
  • Powes AC. Diabetes Mellitus. In: Longo DL et al, eds. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill, 2012;2968-3003.
  • Kwak SH, Kim HS, Choi SH, et al. Subsequent pregnancy after ges- tational diabetes mellitus: frequency and risk factors for recurren- ce in Korean women. Diabetes Care 2008;31:1867-71.
  • Schäfer SA, Machicao F, Fritsche A, Häring HU, Kantartzis K. New type 2 diabetes risk genes provide new insights in insülin secretion mechanisms. Diabetes Res Clin Pract 2011;93:9-24.
  • Nestorowicz A, Inagaki N, Gonoi T. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997;46:1743-8.
  • Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 1998;41:1511-5.
  • Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. Plos Biol 2003;1:E20.
  • Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel su- bunit Kir6.2 and permanent neonatal diabetes. New Eng J Med 2004;350:1838-49. Note: Erratum: New Eng J Med 2004;351:1470.
  • Hansen SK, Nielsen E-M D, Ek J, et al. Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J Clin Endocr Metab 2005;90:3629-37.
  • Massa O, Iafusco D, D’Amato E, et al. KCNJ11 activating muta- tions in Italian patients with permanent neonatal diabetes. Hum Mutat 2005;25:22-7.
  • Sladek R, Rocheleau G, Rung J, et al. A genome-wide associ- ation study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881-5.
  • Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638-45.
  • Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105-16.
  • Qiu L, Na R, Xu R, et al. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. Plos One 2014;9:e93961.
  • Coustan DR, Carpenter MW. The diagnosis of gestational diabe- tes. Diabetes Care 1998;21:5-8.
  • Gloyn AL, McCarthy MI. The genetics of type 2 diabetes. Best Pra- ct Res Clin Endocrinol Metab 2001;15:293-308.
  • Weires MB, Tausch B, Haug PJ, et al. Familiality of diabetes melli- tus. Exp Clin Endocrinol Diabetes 2007;115:634-40.
  • Inagaki N, Gonoi T, Clement JP. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor Science 1995;270:1166-70.
  • Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 poly- morphism predisposes to type 2 diabetes by inducing overacti- vity of pancreatic β-cell ATP-sensitive K(+) channels. Diabetes 2002;51:875-9.
  • Nielsen EM, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin respon- se and increased risk of type 2 diabetes. Diabetes 2003;52:573-7.
  • Liu Z, Zhang YW, Feng QP, et al. [Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006;28:124-8.
  • Sakamoto Y, Inoue H, Keshavarz P, et al. SNPs in the KCNJ11-A- BCC8 gene locus are associated with type 2 diabetes and blo- od pressure levels in the Japanese population. J Hum Genet 2007;52:781-93.
  • Chavali S, Mahajan A, Tabassum R, et al. Association of variants in genes involved in pancreatic beta-cell development and function with type 2 diabetes in North Indians. J Hum Genet 2011;56:695- 700.
  • Koo BK, Cho YM, Park BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med 2007;24:178-86.
  • Gonen MS, Arikoglu H, Erkoc Kaya D, et al. Effects of single nuc- leotide polymorphisms in K(ATP) channel genes on type 2 diabe- tes in a Turkish population. Arch Med Res 2012;43:317-23.
  • Shaat N, Ekelund M, Lernmark A, et al. Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mel- litus. Diabetologia 2005;48:2544–51.
  • Lauenborg J, Grarup N, Damm P, et al. Common type 2 diabetes risk gene variants associate with gestational diabetes, J Clin En- docrinol Metab 2009;94:145-50.
  • Mao H, Li Q, Gao S. Meta-Analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabe- tes mellitus. Plos One 2012;7:1-7.
  • Zhang C, Bao W, Rong Y, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 2013;19:376-90.
  • Pappa KI, Gazouli M, Economou K, et al. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol Endocrinol 2011;27:267-72.
  • Cho YM, Kim TH, Lim S, et al. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean populati- on. Diabetologia 2009;52:253-61.
  • Ekelund M, Shaat N, Almgren P, et al. Genetic prediction of post- partum diabetes in women with gestational diabetes mellitus. Dia- betes Res Clin Pract 2012;97:394-8.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Original Article
Yazarlar

Hilal Arıkoğlu Bu kişi benim

Sevgi Bozkurt Bu kişi benim

Süleyman Baldane Bu kişi benim

Funda İşcioğlu Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 25 Sayı: 4

Kaynak Göster

Vancouver Arıkoğlu H, Bozkurt S, Baldane S, İşcioğlu F. Gestasyonel diyabet gelişiminde KCNJ11 geninin rolü. Genel Tıp Derg. 2015;25(4):116-21.