Klinik Araştırma
BibTex RIS Kaynak Göster

Determinants of Hospitalization and Mortality in COVID-19 Patients Admitted to the Emergency Department

Yıl 2025, Cilt: 35 Sayı: 4, 586 - 596, 29.08.2025
https://doi.org/10.54005/geneltip.1611379

Öz

Aims: We aim to elucidate the clinical traits, comorbidities, and prognostic factors associated with intensive care unit (ICU) admission and in-hospital mortality in a group of COVID-19 patients admitted to a university hospital.
Methods: This study was conducted in the XXX University Hospital. Retrospective cohort study of patients admitted to the Emergency Department between April 1, 2020, to October 30, 2020, and received the International Classification of Diseases (ICD)-10 diagnostic code of COVID-19. We separated the patients into three groups: outpatients, patients admitted to COVID-19 wards, and patients admitted to ICUs. We performed multivariate regression analyses to identify the variables predicting hospital mortality.
Results: Of the 194 patients included in the study, 54.6% were male, and the median age was 49 (interquartile range, 37–63). The study admitted 128 (66%) patients to wards, 37 (19.1%) to ICUs, and 29 (14.9%) as outpatients. The most frequent comorbidities were hypertension (25.3%), diabetes mellitus (19.1%), and malignancy (11.9%). Compared with the non-ICU group, ICU patients had older ages (p < 0.001) and had more comorbidities. In the multivariate analysis, age (odds ratio [OR], 1.13; 95% confidence interval [CI]: 1.00–1.29), ferritin (OR, 1.004; 95% CI: 1.000–1.008), and red cell distribution width (RDW) (OR, 2.08; 95% CI: 1.18–3.68) on admission were significant factors predicting mortality in the hospital.
Conclusions: In-hospital mortality rate was 16.5% among all patients. The older age, increased ferritin, and RDW are the most important factors associated with a higher risk of death during hospital stays for COVID-19.

Kaynakça

  • 1. Kucukceran K, Ayranci MK, Girisgin AS, Kocak S, Dundar ZD. The role of the BUN/albumin ratio in predicting mortality in COVID-19 patients in the emergency department. Am J Emerg Med. 2021;48:33-7.
  • 2. Uppal A, Silvestri DM, Siegler M, Natsui S, Boudourakis L, Salway RJ, et al. Critical Care And Emergency Department Response At The Epicenter Of The COVID-19 Pandemic. Health Aff (Millwood). 2020;39(8):1443-9.
  • 3. Baker T, Schell CO, Petersen DB, Sawe H, Khalid K, Mndolo S, et al. Essential care of critical illness must not be forgotten in the COVID-19 pandemic. Lancet. 2020;395(10232):1253-4.
  • 4. Alhumaid S, Al Mutair A, Al Alawi Z, Al Salman K, Al Dossary N, Omar A, et al. Clinical features and prognostic factors of intensive and non-intensive 1014 COVID-19 patients: an experience cohort from Alahsa, Saudi Arabia. Eur J Med Res. 2021;26(1):47.
  • 5. Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020;71(15):833-40.
  • 6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 7. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-8.
  • 8. Kaushal K, Kaur H, Sarma P, Bhattacharyya A, Sharma DJ, Prajapat M, et al. Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis. J Crit Care. 2022;67:172-81.
  • 9. Lippi G, Henry BM, Sanchis-Gomar F. Red Blood Cell Distribution Is a Significant Predictor of Severe Illness in Coronavirus Disease 2019. Acta Haematol. 2021;144(4):360-4.
  • 10. COVID-19 (SARS-CoV-2 infection) guide: Republic of Turkey Ministry of Health; 2020 [Available from: https://covid19.saglik.gov.tr/TR-66301/covid-19-rehberi.html.
  • 11. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763-73.
  • 12. Erinmez MA, Köylü R, Köylü Ö. The Relationship Between Acute Phase Reactants Levels at the Time of Admission and Comorbid Conditions with Mortality in Patients Diagnosed With Covid-19. Genel Tıp Dergisi. 2024;34(2):218-22.
  • 13. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:1753466620937175.
  • 14. Zhang H, Wu D, Wang Y, Shi Y, Shao Y, Zeng F, et al. Ferritin-mediated neutrophil extracellular traps formation and cytokine storm via macrophage scavenger receptor in sepsis-associated lung injury. Cell Commun Signal. 2024;22(1):97.
  • 15. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-81.
  • 16. Feng C, Hua Z, He L, Yao S, Zou H, Zhu Y, et al. A convenient and practical index for predicting the induction response in adult patients with hemophagocytic lymphohistiocytosis: ferritin/platelet ratio. Ann Hematol. 2024;103(3):715-23.
  • 17. Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, et al. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun. 2022;126:102778.
  • 18. McCullough K, Bolisetty S. Iron Homeostasis and Ferritin in Sepsis-Associated Kidney Injury. Nephron. 2020;144(12):616-20.
  • 19. Aydınyılmaz F, Aksakal E, Pamukcu HE, Aydemir S, Doğan R, Saraç İ, et al. Significance of MPV, RDW and PDW with the Severity and Mortality of COVID-19 and Effects of Acetylsalicylic Acid Use. Clin Appl Thromb Hemost. 2021;27:10760296211048808.
  • 20. Danese E, Lippi G, Montagnana M. Red blood cell distribution width and cardiovascular diseases. J Thorac Dis. 2015;7(10):E402-11.
  • 21. Nan W, Li S, Wan J, Peng Z. Association of mean RDW values and changes in RDW with in-hospital mortality in ventilator-associated pneumonia (VAP): Evidence from MIMIC-IV database. Int J Lab Hematol. 2024;46(1):99-106.
  • 22. Jandaghian S, Vaezi A, Manteghinejad A, Nasirian M, Vaseghi G, Haghjooy Javanmard S. Red Blood Cell Distribution Width (RDW) as a Predictor of In-Hospital Mortality in COVID-19 Patients; a Cross Sectional Study. Arch Acad Emerg Med. 2021;9(1):e67.
  • 23. Özsarı E, Demirkol ME, Özsarı S, Kaya M, Kocadağ D, Baysal Z. COVID-19 Pneumonia-Related ARDS – Can We Predict Mortality with Laboratory Parameters? Bolu Abant Izzet Baysal Universitesi Tip Fakultesi Abant Tip Dergisi. 2024.
  • 24. Jaskolowska J, Balcerzyk-Barzdo E, Jozwik A, Gaszynski T, Ratajczyk P. Selected Predictors of COVID-19 Mortality in the Hospitalised Patient Population in a Single-Centre Study in Poland. Healthcare (Basel). 2023;11(5).
  • 25. Özbilen M, Savrun ŞT, Kurt C, Kaşko Arici Y. Is Hyperferritinemia Reliable in Determining the Severity of COVID-19 in Older Patients? Genel Tıp Dergisi. 2023;33(6):649-55.
  • 26. Rizzi M, D'Onghia D, Tonello S, Minisini R, Colangelo D, Bellan M, et al. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int J Mol Sci. 2023;24(8).
  • 27. Hakoğlu O, Sezik S, Okuş O. Investigation of poor prognostic markers in covid-19 patients hospitalized from emergency department. Journal of Experimental and Clinical Medicine. 2022;39(2):511-5.

Acil Servise Başvuran Covid-19 Hastalarında Hastaneye Yatış ve Mortalitenin Belirleyicileri

Yıl 2025, Cilt: 35 Sayı: 4, 586 - 596, 29.08.2025
https://doi.org/10.54005/geneltip.1611379

Öz

Amaç: Bir üniversite hastanesine başvuran COVID-19 hastaları ile ilgili klinik özellikleri, komorbiditeleri ve prognostik değişkenleri, yoğun bakım ünitesine (YBÜ) yatışı ve hastane içi mortaliteyi öngören faktörleri tanımlamak.
Gereç ve Yöntem: Bu çalışma XXX Üniversitesi Hastanesi'nde yapılmıştır. 1 Nisan 2020 ile 30 Ekim 2020 tarihleri arasında Acil Servise başvuran ve COVID-19 tanı kodunu alan hastaların retrospektif kohort çalışmasıdır. Hastalar; ayaktan hastalar, COVID-19 servislerine yatan hastalar ve YBÜ’ye yatan hastalar olarak üç gruba ayrıldı. Hastanede mortaliteyi öngören değişkenleri belirlemek için çok değişkenli regresyon analizleri yapıldı.
Bulgular: Çalışmaya dahil edilen 194 hastanın %54,6'sı erkekti ve medyan yaş 49'du (çeyrekler arası aralık, 37-63). Hastaların 128'i (%66) servise, 37'si (%19,1) YBÜ’ye yatırıldı, 29'u (%14,9) ayaktan tedavi edildi. En sık eşlik eden hastalıklar hipertansiyon (%25,3), diabetes mellitus (%19,1) malignite (%11,9) idi. Yoğun bakımda olmayan grupla karşılaştırıldığında, yoğun bakım hastalarının yaşı daha büyüktü (p<0,001); ve daha fazla yandaş hastalığı vardı. Çok değişkenli analizde yaş (Odds oranı, 1,13; %95 güven aralığı: 1,00–1,29), ferritin (Odds oranı, 1,004; %95 güven aralığı: 1,000–1,008) ve kırmızı hücre dağılım genişliği (RDW) (Odds oranı, 2.08; %95 güven aralığı: 1.18–3.68) hastanedeki mortaliteyi öngören önemli faktörlerdi.
Sonuç: Tüm hastalarda hastane içi mortalite oranı %16.5 idi. İleri yaş, artan ferritin ve RDW, COVID-19 nedeniyle hastanede kalış sırasında daha yüksek ölüm riski ile ilişkili en önemli faktörlerdir.

Kaynakça

  • 1. Kucukceran K, Ayranci MK, Girisgin AS, Kocak S, Dundar ZD. The role of the BUN/albumin ratio in predicting mortality in COVID-19 patients in the emergency department. Am J Emerg Med. 2021;48:33-7.
  • 2. Uppal A, Silvestri DM, Siegler M, Natsui S, Boudourakis L, Salway RJ, et al. Critical Care And Emergency Department Response At The Epicenter Of The COVID-19 Pandemic. Health Aff (Millwood). 2020;39(8):1443-9.
  • 3. Baker T, Schell CO, Petersen DB, Sawe H, Khalid K, Mndolo S, et al. Essential care of critical illness must not be forgotten in the COVID-19 pandemic. Lancet. 2020;395(10232):1253-4.
  • 4. Alhumaid S, Al Mutair A, Al Alawi Z, Al Salman K, Al Dossary N, Omar A, et al. Clinical features and prognostic factors of intensive and non-intensive 1014 COVID-19 patients: an experience cohort from Alahsa, Saudi Arabia. Eur J Med Res. 2021;26(1):47.
  • 5. Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020;71(15):833-40.
  • 6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • 7. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-8.
  • 8. Kaushal K, Kaur H, Sarma P, Bhattacharyya A, Sharma DJ, Prajapat M, et al. Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis. J Crit Care. 2022;67:172-81.
  • 9. Lippi G, Henry BM, Sanchis-Gomar F. Red Blood Cell Distribution Is a Significant Predictor of Severe Illness in Coronavirus Disease 2019. Acta Haematol. 2021;144(4):360-4.
  • 10. COVID-19 (SARS-CoV-2 infection) guide: Republic of Turkey Ministry of Health; 2020 [Available from: https://covid19.saglik.gov.tr/TR-66301/covid-19-rehberi.html.
  • 11. Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, et al. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(8):763-73.
  • 12. Erinmez MA, Köylü R, Köylü Ö. The Relationship Between Acute Phase Reactants Levels at the Time of Admission and Comorbid Conditions with Mortality in Patients Diagnosed With Covid-19. Genel Tıp Dergisi. 2024;34(2):218-22.
  • 13. Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:1753466620937175.
  • 14. Zhang H, Wu D, Wang Y, Shi Y, Shao Y, Zeng F, et al. Ferritin-mediated neutrophil extracellular traps formation and cytokine storm via macrophage scavenger receptor in sepsis-associated lung injury. Cell Commun Signal. 2024;22(1):97.
  • 15. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-81.
  • 16. Feng C, Hua Z, He L, Yao S, Zou H, Zhu Y, et al. A convenient and practical index for predicting the induction response in adult patients with hemophagocytic lymphohistiocytosis: ferritin/platelet ratio. Ann Hematol. 2024;103(3):715-23.
  • 17. Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, et al. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun. 2022;126:102778.
  • 18. McCullough K, Bolisetty S. Iron Homeostasis and Ferritin in Sepsis-Associated Kidney Injury. Nephron. 2020;144(12):616-20.
  • 19. Aydınyılmaz F, Aksakal E, Pamukcu HE, Aydemir S, Doğan R, Saraç İ, et al. Significance of MPV, RDW and PDW with the Severity and Mortality of COVID-19 and Effects of Acetylsalicylic Acid Use. Clin Appl Thromb Hemost. 2021;27:10760296211048808.
  • 20. Danese E, Lippi G, Montagnana M. Red blood cell distribution width and cardiovascular diseases. J Thorac Dis. 2015;7(10):E402-11.
  • 21. Nan W, Li S, Wan J, Peng Z. Association of mean RDW values and changes in RDW with in-hospital mortality in ventilator-associated pneumonia (VAP): Evidence from MIMIC-IV database. Int J Lab Hematol. 2024;46(1):99-106.
  • 22. Jandaghian S, Vaezi A, Manteghinejad A, Nasirian M, Vaseghi G, Haghjooy Javanmard S. Red Blood Cell Distribution Width (RDW) as a Predictor of In-Hospital Mortality in COVID-19 Patients; a Cross Sectional Study. Arch Acad Emerg Med. 2021;9(1):e67.
  • 23. Özsarı E, Demirkol ME, Özsarı S, Kaya M, Kocadağ D, Baysal Z. COVID-19 Pneumonia-Related ARDS – Can We Predict Mortality with Laboratory Parameters? Bolu Abant Izzet Baysal Universitesi Tip Fakultesi Abant Tip Dergisi. 2024.
  • 24. Jaskolowska J, Balcerzyk-Barzdo E, Jozwik A, Gaszynski T, Ratajczyk P. Selected Predictors of COVID-19 Mortality in the Hospitalised Patient Population in a Single-Centre Study in Poland. Healthcare (Basel). 2023;11(5).
  • 25. Özbilen M, Savrun ŞT, Kurt C, Kaşko Arici Y. Is Hyperferritinemia Reliable in Determining the Severity of COVID-19 in Older Patients? Genel Tıp Dergisi. 2023;33(6):649-55.
  • 26. Rizzi M, D'Onghia D, Tonello S, Minisini R, Colangelo D, Bellan M, et al. COVID-19 Biomarkers at the Crossroad between Patient Stratification and Targeted Therapy: The Role of Validated and Proposed Parameters. Int J Mol Sci. 2023;24(8).
  • 27. Hakoğlu O, Sezik S, Okuş O. Investigation of poor prognostic markers in covid-19 patients hospitalized from emergency department. Journal of Experimental and Clinical Medicine. 2022;39(2):511-5.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Acil Tıp, Bulaşıcı Hastalıklar
Bölüm Original Article
Yazarlar

Çağrı Bayrak 0000-0002-1453-1617

Yusuf Ertuğrul Aslan 0000-0002-8459-2116

Fatih Ulu 0000-0003-0055-7565

Nurullah Günay 0000-0003-1604-9565

Erken Görünüm Tarihi 29 Ağustos 2025
Yayımlanma Tarihi 29 Ağustos 2025
Gönderilme Tarihi 1 Ocak 2025
Kabul Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 35 Sayı: 4

Kaynak Göster

Vancouver Bayrak Ç, Aslan YE, Ulu F, Günay N. Determinants of Hospitalization and Mortality in COVID-19 Patients Admitted to the Emergency Department. Genel Tıp Derg. 2025;35(4):586-9.