Araştırma Makalesi
BibTex RIS Kaynak Göster

Empagliflozin Modulates Angiogenesis and Migration Through the NF-κB1 Axis in Breast Cancer Cells

Yıl 2025, Cilt: 35 Sayı: 4, 696 - 703, 29.08.2025
https://doi.org/10.54005/geneltip.1686771

Öz

Abstract
Background/Aims:
Triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer remain challenging to treat due to their aggressive behavior and resistance to conventional therapies. Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, has recently attracted attention for its potential anticancer properties. This study aimed to evaluate the effects of EMPA on cell viability, migration, and gene expression in breast cancer cell lines, focusing on its role in modulating angiogenesis and epithelial-to-mesenchymal transition (EMT) pathways.
Methods:
The effects of EMPA were assessed in MDA-MB-231 (TNBC) and MCF-7 (Luminal A) breast cancer cell lines using WST-1 cytotoxicity assays, scratch wound migration assays, and quantitative reverse transcription PCR (qRT-PCR). Gene expression analyses were conducted for NF-κB, N-cadherin, VEGFA, and FGF1 to investigate EMPA’s impact on inflammation, angiogenesis, and EMT.
Results:
EMPA exhibited dose-dependent cytotoxicity, with MCF-7 cells showing greater sensitivity (IC₅₀: 521 µM) compared to MDA-MB-231 cells (IC₅₀: 1080 µM). EMPA significantly inhibited cell migration in both cell lines. In MDA-MB-231 cells, qRT-PCR revealed downregulation of NF-κB, VEGFA, and FGF1, indicating anti-inflammatory and anti-angiogenic activity. In contrast, MCF-7 cells showed NF-κB upregulation along with VEGFA and FGF1 downregulation, suggesting a subtype-specific molecular response.
Conclusions:
EMPA suppresses breast cancer cell proliferation, migration, and angiogenic signaling, potentially through NF-κB modulation. Its distinct effects on different breast cancer subtypes suggest a context-dependent therapeutic potential. These findings support further investigation into EMPA as a repurposed agent for targeted breast cancer therapy, particularly in aggressive forms such as TNBC.

Kaynakça

  • 1. Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. J Clin Oncol. 2023;41(16_suppl):10528–10528.
  • 2. Akingbesote ND, Norman A, Zhu W, Halberstam AA, Zhang X, Foldi J, et al. A precision medicine approach to metabolic therapy for breast cancer in mice. Commun Biol. 2022;5(1):478.
  • 3. Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol. 2023;14(1):127.
  • 4. Gurzu S, Turdean S, Kovecsi A, Contac AO, Jung I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update. World J Clin casesCases. 2015;3(5):393–404.
  • 5. Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428–38.
  • 6. Bahrami A, Khalaji A, Najafi MB, Sadati S, Raisi A, Abolhassani A, et al. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Méd Res. 2024;29(1):610.
  • 7. ALBAYRAK MGB, YANAR S, KASAP M, AKPINAR G. Expression Levels of ACE2 and TMPRSS2 in Different Cell Lines. Acta Med Nicomedia. 2023;6(2):260–8.
  • 8. Korak T, Emrence Z, Sirma-Ekmekci S, Abaci N, Ergül E. Effect of Nigella sativa L. extract and thymoquinone on the genes responsible for cell proliferation, migration, and NK cell cytotoxicity in breast cancer. Indian J Exp Biol. 2024;62(05).
  • 9. Basiouni S, Abel N, Eisenreich W, May-Simera HL, Shehata AA. Structural Analysis of Cardanol and Its Biological Activities on Human Keratinocyte Cells. Metabolites. 2025;15(2):83.
  • 10. Korak T, Ergül E, Sazci A. Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Curr Pharm Biotechnol. 2020;21(12):1176–85.
  • 11. Yanar S, Albayrak MGB, Kasap M, Akpinar G. From Androgen Dependence to Independence in Prostate Cancer: Unraveling Therapeutic Potential and Proteomic Landscape of Hydroxychloroquine as an Autophagy Inhibitor. OMICS: A J Integr Biol. 2024;28(5):246–55.
  • 12. Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers. 2022;14(23):5811.
  • 13. Karzoon A, Yerer MB, Cumaoğlu A. Empagliflozin demonstrates cytotoxicity and synergy with tamoxifen in ER-positive breast cancer cells: anti-proliferative and anti-survival effects. Naunyn-Schmiedeberg’s Arch Pharmacol. 2025;398(1):781–98.
  • 14. Eliaa SG, Al-Karmalawy AA, Saleh RM, Elshal MF. Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular Docking Studies. ACS Pharmacol Transl Sci. 2020;3(6):1330–8.
  • 15. Nalla LV, Khairnar A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p 3p-dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med. 2024;220:288– 300.
  • 16. Qian X, Anzovino A, Kim S, Suyama K, Yao J, Hulit J, et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–21.
  • 17. Huang J, Liu Y, Shi M, Zhang X, Zhong Y, Guo S, et al. Empagliflozin attenuating renal interstitial fibrosis in diabetic kidney disease by inhibiting lymphangiogenesis and lymphatic endothelial-to-mesenchymal transition via the VEGF-C/VEGFR3 pathway. Biomed Pharmacother. 2024;180:117589.
  • 18. Li J, Liu H, Takagi S, Nitta K, Kitada M, Srivastava SP, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5(6).
  • 19. Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through the AMPK/mTOR pathway. Biomed Pharmacother. 2020;132:110821.
  • 20. Wu Y, Sarkissyan M, Vadgama J. Epithelial-Mesenchymal Transition and Breast Cancer. J Clin Med. 2016;5(2):13.
  • 21. Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL‐Induced RECK Suppression, Cardiotrophin‐1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediat Inflamm. 2023;2023(1):6112301.

Empagliflozin’in Meme Kanseri Hücrelerinde NF-κB1 Aracılı Anjiyogenez ve Hücre Göçü Üzerine Etkisi

Yıl 2025, Cilt: 35 Sayı: 4, 696 - 703, 29.08.2025
https://doi.org/10.54005/geneltip.1686771

Öz

Giriş/Amaç:
Üçlü negatif meme kanseri (TNBC) ve hormon reseptörü pozitif meme kanseri, agresif seyirleri ve geleneksel tedavilere karşı dirençleri nedeniyle tedavisi zor olan alt tiplerdir. Sodyum-glukoz ko-transporter 2 (SGLT2) inhibitörü olan empagliflozin (EMPA), son dönemde potansiyel antikanser özellikleri ile dikkat çekmektedir. Bu çalışmanın amacı, EMPA’nın meme kanseri hücre hatları üzerindeki hücre canlılığı, göçü ve gen ekspresyonu üzerindeki etkilerini değerlendirmek ve özellikle anjiyogenez ile epitel-mezenkimal geçiş (EMT) yollarındaki düzenleyici rolünü incelemektir.
Yöntemler:
EMPA’nın etkileri, MDA-MB-231 (TNBC) ve MCF-7 (Luminal A) hücre hatlarında WST-1 sitotoksisite testi, yara iyileşme (scratch) testi ve qRT-PCR ile değerlendirilmiştir. NF-κB, N-kaderin, VEGFA ve FGF1 genlerinin ekspresyon düzeyleri analiz edilmiştir.
Bulgular:
EMPA, her iki hücre hattında da doz bağımlı sitotoksisite ve göç inhibisyonu göstermiştir. MCF-7 hücreleri EMPA’ya daha duyarlı bulunmuştur (IC₅₀: 521 µM). MDA-MB-231 hücrelerinde NF-κB, VEGFA ve FGF1 baskılanırken, MCF-7 hücrelerinde NF-κB artışı ile birlikte VEGFA ve FGF1 azalması gözlemlenmiştir.
Sonuç:
EMPA, meme kanseri hücrelerinde proliferasyon, göç ve anjiyogenez süreçlerini baskılayarak antikanser etki göstermektedir. Alt tiplere özgü moleküler yanıtları nedeniyle, özellikle TNBC gibi agresif alt tiplerde yeni tedavi stratejileri için umut vadetmektedir.

Kaynakça

  • 1. Sedeta ET, Jobre B, Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. J Clin Oncol. 2023;41(16_suppl):10528–10528.
  • 2. Akingbesote ND, Norman A, Zhu W, Halberstam AA, Zhang X, Foldi J, et al. A precision medicine approach to metabolic therapy for breast cancer in mice. Commun Biol. 2022;5(1):478.
  • 3. Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol. 2023;14(1):127.
  • 4. Gurzu S, Turdean S, Kovecsi A, Contac AO, Jung I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update. World J Clin casesCases. 2015;3(5):393–404.
  • 5. Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428–38.
  • 6. Bahrami A, Khalaji A, Najafi MB, Sadati S, Raisi A, Abolhassani A, et al. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Méd Res. 2024;29(1):610.
  • 7. ALBAYRAK MGB, YANAR S, KASAP M, AKPINAR G. Expression Levels of ACE2 and TMPRSS2 in Different Cell Lines. Acta Med Nicomedia. 2023;6(2):260–8.
  • 8. Korak T, Emrence Z, Sirma-Ekmekci S, Abaci N, Ergül E. Effect of Nigella sativa L. extract and thymoquinone on the genes responsible for cell proliferation, migration, and NK cell cytotoxicity in breast cancer. Indian J Exp Biol. 2024;62(05).
  • 9. Basiouni S, Abel N, Eisenreich W, May-Simera HL, Shehata AA. Structural Analysis of Cardanol and Its Biological Activities on Human Keratinocyte Cells. Metabolites. 2025;15(2):83.
  • 10. Korak T, Ergül E, Sazci A. Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Curr Pharm Biotechnol. 2020;21(12):1176–85.
  • 11. Yanar S, Albayrak MGB, Kasap M, Akpinar G. From Androgen Dependence to Independence in Prostate Cancer: Unraveling Therapeutic Potential and Proteomic Landscape of Hydroxychloroquine as an Autophagy Inhibitor. OMICS: A J Integr Biol. 2024;28(5):246–55.
  • 12. Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers. 2022;14(23):5811.
  • 13. Karzoon A, Yerer MB, Cumaoğlu A. Empagliflozin demonstrates cytotoxicity and synergy with tamoxifen in ER-positive breast cancer cells: anti-proliferative and anti-survival effects. Naunyn-Schmiedeberg’s Arch Pharmacol. 2025;398(1):781–98.
  • 14. Eliaa SG, Al-Karmalawy AA, Saleh RM, Elshal MF. Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular Docking Studies. ACS Pharmacol Transl Sci. 2020;3(6):1330–8.
  • 15. Nalla LV, Khairnar A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p 3p-dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med. 2024;220:288– 300.
  • 16. Qian X, Anzovino A, Kim S, Suyama K, Yao J, Hulit J, et al. N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene. 2014;33(26):3411–21.
  • 17. Huang J, Liu Y, Shi M, Zhang X, Zhong Y, Guo S, et al. Empagliflozin attenuating renal interstitial fibrosis in diabetic kidney disease by inhibiting lymphangiogenesis and lymphatic endothelial-to-mesenchymal transition via the VEGF-C/VEGFR3 pathway. Biomed Pharmacother. 2024;180:117589.
  • 18. Li J, Liu H, Takagi S, Nitta K, Kitada M, Srivastava SP, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5(6).
  • 19. Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through the AMPK/mTOR pathway. Biomed Pharmacother. 2020;132:110821.
  • 20. Wu Y, Sarkissyan M, Vadgama J. Epithelial-Mesenchymal Transition and Breast Cancer. J Clin Med. 2016;5(2):13.
  • 21. Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL‐Induced RECK Suppression, Cardiotrophin‐1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediat Inflamm. 2023;2023(1):6112301.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Onkoloji, Klinik Tıp Bilimleri (Diğer)
Bölüm Original Article
Yazarlar

Merve Gulsen Bal Albayrak 0000-0003-2444-4258

Tuğcan Korak 0000-0003-4902-4022

Sevinc Yanar 0000-0002-6438-7385

Nihal Kayır 0009-0005-1628-5367

Gürler Akpınar 0000-0002-9675-3714

Murat Kasap 0000-0001-8527-2096

Erken Görünüm Tarihi 29 Ağustos 2025
Yayımlanma Tarihi 29 Ağustos 2025
Gönderilme Tarihi 29 Nisan 2025
Kabul Tarihi 10 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 35 Sayı: 4

Kaynak Göster

Vancouver Bal Albayrak MG, Korak T, Yanar S, Kayır N, Akpınar G, Kasap M. Empagliflozin Modulates Angiogenesis and Migration Through the NF-κB1 Axis in Breast Cancer Cells. Genel Tıp Derg. 2025;35(4):696-703.