Araştırma Makalesi
BibTex RIS Kaynak Göster

Major Lösemi Alt Tiplerinde Epigenetik Genlerdeki Somatik Mutasyonların Analizi

Yıl 2025, Cilt: 35 Sayı: 4, 746 - 758, 29.08.2025
https://doi.org/10.54005/geneltip.1704208

Öz

Amaç: Bu çalışmada, 13 ALL, 19 AML, 14 KLL ve 15 KML hastasının kemik iliği örneklerinin NGS analizi ile epigenetik düzenlemede rol oynayan DNMT3A, TET1, TET2, IDH1, IDH2, ASXL1 ve SETBP1 genlerinde somatik mutasyonların varlığının araştırılması amaçlanmıştır.
Gereç ve Yöntem:13 ALL, 19 AML, 14 KLL ve 15 KML hastasının kemik iliği örneklerinden DNA izolasyonu gerçekleştirilmiş ve dizi analizi için Kapa NGS DNA ekstraksiyon kiti kullanılmıştır. Elde edilen DNA'nın saflığı ve konsantrasyonu Qubit floremetre ile ölçülmüş, yüksek kalitede kütüphane hazırlanması için NadPrep DNA Universal Library Preparation Kit kullanılmıştır. Çalışmadan elde edilen verilerin biyoinformatik analizi, Roche Diagnostics tarafından NGS çözümleri için sağlanan portal aracılığıyla gerçekleştirilmiştir. İlgili genlerde tespit edilen varyantların patojenite durumu ACMG sınıflandırmasına göre yapılmıştır.
Bulgular: ALL tanısı alan 13 hastanın bir hasta hariç, kalan hastaların tamamında en az bir gende varyasyon saptandı. 7 gen arasından en fazla distinct varyant TET3 geninde saptanmış olup tamamı ACMG klasifikasyonuna göre VUS varyantıydı. AML tanısı alan 19 hastada ilgili genler arasında en fazla distinct varyantın saptandığı gen TET3 olup tüm varyantları VUS sınıfındaydı, sonrasında sırasıyla TET2 ve ASXL1 genleri gelmekteydi. AML hastalarının 4’ü hariç diğer hastalarda en az bir gende varyant saptanmıştı. KLL tanısı alan 14 hastanın 4’ünde herhangi bir varyant saptanmadı. Kalan hastalarda ilgili genlerden en az birisinde varyant saptandı. KML tanısı alan 15 hastadan birisinde ilgili genlerde herhangi bir varyant saptanmadı. Kalan hastalarda ise ilgili genlerin en az birisinde varyant saptandı. KML hastalarında en fazla distinct varyant saptanan genler sırasıyla TET3, ASXL1 ve SETBP1 genleriydi
Sonuç: Çalışma örneklemini oluşturan tüm lösemi alt tiplerinde ilgili genlerden en az bir varyant saptanmıştır. Çalışmamızda başlıca lösemi alt tiplerinde olan hasta gruplarından en az bir hastada DNMT3A geninde c.856-2A>T varyantı saptanmıştır. Bu durum ilgili varyantın hematopoietik kök hücre süreçlerinde bu genin önemli bir rol oynayabileceğini düşündürmektedir.

Kaynakça

  • 1. Chen J, Herlong FH, Stroehlein JR, Mishra L. Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Curr Protein Pept Sci. 2016; 17:411-37.
  • 2. Srivastava AK, Wang Y, Huang R, Skinner C, Thompson T, Pollard L, et al. Human genome mGenome Meeting 2016: Houston, TX, USA. 28 February- 2 March 2016. Hum Genomics. 2016 May 26;10 Suppl 1(Suppl 1):12.
  • 3. Pierini S, Jordanov SH, Mitkova AV, Chalakov IJ, Melnicharov MB, Kunev KV, et al. Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. 2014; 36:1103-1108.
  • 4. de de Cubas AA, Dunker W, Zaninovich A, Hongo RA, Bhatia A, Panda A, et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight. 2020;5: e137569.
  • 5. Alemayehu A, Sebova K, Fridrichova I. Redundant DNA methylation in colorectal cancers of Lynch-syndrome patients. Genes, Chromosomes, Cancer. 2008; 47:906-14.
  • 6. Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017; 396:130-137.
  • 7. Fong CY, Morison J, Dawson MA. Epigenetics in the hematologic malignancies. Haematologica. 2014; 99:1772-1783
  • 8. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31:89-97.
  • 9. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16:6-21.
  • 10. Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK, et al. Genome Genome-wide analysis of acute myeloid leukemia reveals leukemia leukemia-specific methylome and subtype subtype-specific hypomethylation of repeats. PLoS One. 2012;7: e33213.
  • 11. Carsten Carlberg, Ferdinand Molnár. Human Epigenetics: How Science Works, Switzerland: Springer Nature; 2019. p. 89-99. ISBN: 978-3-030-22907-8
  • 12. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013; 109:299-306.
  • 13. Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 2015; 6:7307
  • 14. Guo Y, Yang H, Chen S, Zhang P, Li R, Nimer SD, et al. Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia. 2018; 32:1834-1837.
  • 15. Tefferi A, Lasho TL, Finke C, Gangat N, Hanson CA, Ketterling RP, et al. Prognostic significance of ASXL1 mutation types and allele burden in myelofibrosis. Leukemia. 2018; 32:837-839.
  • 16. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6: e393.
  • 17. Scheps K, Meyer C, Bestach Y, Enrico A, Bengió R, Rodríguez-Zubieta M, et al. Identification of driver and subclonal mutations in ASXL1 and IDH1/IDH2 genes in an Argentine series of patients with myelofibrosis. Int J Lab Hematol. 2018;40: e82-e86.
  • 18. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013; 27:82-91.
  • 19. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015; 15:152-165. 20. Largeaud L, Bertoli S, Bérard E, Tavitian S, Picard M, Dufrechou S, et al. Genomic landscape of hyperleukocytic acute myeloid leukemia. Blood Cancer J. 2022; 12:4.
  • 21. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD, et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012; 26:1106-1107.
  • 22. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014; 28:78-87.
  • 23. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of the DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43:309-315.
  • 24. Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem. 2012; 287:30941-30951.
  • 25. Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN, Xiong SM, et al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci U S A. 2014; 111:2620-2625.
  • 26. Yang L, Liu Y, Zhang N, Ding X, Zhang W, Shen K, et al. Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget. 2017; 8:30395-30409.
  • 27. McKenney AS, Levine RL. Isocitrate dehydrogenase mutations in leukemia. J Clin Invest. 2013; 123:3672-3677.
  • 28. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009; 462:739-744.
  • 29. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360:765-773.
  • 30. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018; 378:2386-2398.
  • 31. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016; 30:733-750.
  • 32. Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 2014; 29:102-111.
  • 33. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor development is associated with a decrease of in TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013; 32:663-669.
  • 34. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012; 26:934-942
  • 35. Aslanyan MG, Kroeze LI, Langemeijer SM, Koorenhof-Scheele TN, Massop M, van Hoogen P, et al. Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML-12 clinical trial. Ann Hematol. 2014; 93:1401-1412.

Analysis of Somatic Mutations in Epigenetic Genes in Major Leukemia Subtypes

Yıl 2025, Cilt: 35 Sayı: 4, 746 - 758, 29.08.2025
https://doi.org/10.54005/geneltip.1704208

Öz

Aim: In this study, we aimed to investigate the presence of somatic mutations in DNMT3A, TET1, TET2, IDH1, IDH2, ASXL1 and SETBP1 genes that play a role in epigenetic regulation by NGS analysis of bone marrow samples of 13 ALL, 19 AML, 14 CLL and 15 CML patients..
Material and Method: NA was isolated from bone marrow samples of 13 ALL, 19 AML, 14 CLL and 15 CML patients and Kapa NGS DNA extraction kit was used for sequence analysis. The purity and concentration of the DNA obtained were measured by Qubit fluoremeter, and NadPrep DNA Universal Library Preparation Kit was used for high quality library preparation. Bioinformatic analysis of the data obtained from the study was performed through the portal provided by Roche Diagnostics for NGS solutions. The pathogenicity status of the variants detected in the relevant genes was made according to the ACMG classification.
Results: Variations in at least one gene were found in all but one of the 13 patients diagnosed with ALL. Among 7 genes, the most distinct variant was detected in TET3 gene and all of them were VUS variants according to ACMG classification. In 19 patients diagnosed with AML, the gene with the highest number of distinct variants was TET3 and all variants were in the VUS class, followed by TET2 and ASXL1 genes, respectively. Variants were detected in at least one gene in all but 4 AML patients. No variant was detected in 4 of 14 patients diagnosed with CLL. Variants were detected in at least one of the related genes in the remaining patients. One of the 15 patients diagnosed with CML did not have any variant in the relevant genes. In the remaining patients, variants were detected in at least one of the related genes. The genes with the highest number of distinct variants in CML patients were TET3, ASXL1 and SETBP1, respectively.
Conclusion: At least one variant of the related genes was detected in all leukaemia subtypes constituting the study sample. In our study, c.856-2A>T variant in DNMT3A gene was detected in at least one patient from the patient groups with major leukaemia subtypes. This suggests that this variant may play an important role in haematopoietic stem cell processes.

Etik Beyan

Ethics Committee Approval The study was carried out with the permission of Selçuk University Faculty of Medicine Ethics Committee. (Date: 21.05.2025, Decision No: E-70632468-050.01-1009421). Informed Consent This study was designed retrospectively and consent forms were also obtained from the patients.

Kaynakça

  • 1. Chen J, Herlong FH, Stroehlein JR, Mishra L. Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Curr Protein Pept Sci. 2016; 17:411-37.
  • 2. Srivastava AK, Wang Y, Huang R, Skinner C, Thompson T, Pollard L, et al. Human genome mGenome Meeting 2016: Houston, TX, USA. 28 February- 2 March 2016. Hum Genomics. 2016 May 26;10 Suppl 1(Suppl 1):12.
  • 3. Pierini S, Jordanov SH, Mitkova AV, Chalakov IJ, Melnicharov MB, Kunev KV, et al. Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. 2014; 36:1103-1108.
  • 4. de de Cubas AA, Dunker W, Zaninovich A, Hongo RA, Bhatia A, Panda A, et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer. JCI Insight. 2020;5: e137569.
  • 5. Alemayehu A, Sebova K, Fridrichova I. Redundant DNA methylation in colorectal cancers of Lynch-syndrome patients. Genes, Chromosomes, Cancer. 2008; 47:906-14.
  • 6. Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 2017; 396:130-137.
  • 7. Fong CY, Morison J, Dawson MA. Epigenetics in the hematologic malignancies. Haematologica. 2014; 99:1772-1783
  • 8. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31:89-97.
  • 9. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16:6-21.
  • 10. Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK, et al. Genome Genome-wide analysis of acute myeloid leukemia reveals leukemia leukemia-specific methylome and subtype subtype-specific hypomethylation of repeats. PLoS One. 2012;7: e33213.
  • 11. Carsten Carlberg, Ferdinand Molnár. Human Epigenetics: How Science Works, Switzerland: Springer Nature; 2019. p. 89-99. ISBN: 978-3-030-22907-8
  • 12. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013; 109:299-306.
  • 13. Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 2015; 6:7307
  • 14. Guo Y, Yang H, Chen S, Zhang P, Li R, Nimer SD, et al. Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia. 2018; 32:1834-1837.
  • 15. Tefferi A, Lasho TL, Finke C, Gangat N, Hanson CA, Ketterling RP, et al. Prognostic significance of ASXL1 mutation types and allele burden in myelofibrosis. Leukemia. 2018; 32:837-839.
  • 16. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6: e393.
  • 17. Scheps K, Meyer C, Bestach Y, Enrico A, Bengió R, Rodríguez-Zubieta M, et al. Identification of driver and subclonal mutations in ASXL1 and IDH1/IDH2 genes in an Argentine series of patients with myelofibrosis. Int J Lab Hematol. 2018;40: e82-e86.
  • 18. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013; 27:82-91.
  • 19. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015; 15:152-165. 20. Largeaud L, Bertoli S, Bérard E, Tavitian S, Picard M, Dufrechou S, et al. Genomic landscape of hyperleukocytic acute myeloid leukemia. Blood Cancer J. 2022; 12:4.
  • 21. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD, et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012; 26:1106-1107.
  • 22. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014; 28:78-87.
  • 23. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of the DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43:309-315.
  • 24. Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem. 2012; 287:30941-30951.
  • 25. Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN, Xiong SM, et al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci U S A. 2014; 111:2620-2625.
  • 26. Yang L, Liu Y, Zhang N, Ding X, Zhang W, Shen K, et al. Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget. 2017; 8:30395-30409.
  • 27. McKenney AS, Levine RL. Isocitrate dehydrogenase mutations in leukemia. J Clin Invest. 2013; 123:3672-3677.
  • 28. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009; 462:739-744.
  • 29. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009; 360:765-773.
  • 30. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018; 378:2386-2398.
  • 31. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016; 30:733-750.
  • 32. Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, et al. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 2014; 29:102-111.
  • 33. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor development is associated with a decrease of in TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013; 32:663-669.
  • 34. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012; 26:934-942
  • 35. Aslanyan MG, Kroeze LI, Langemeijer SM, Koorenhof-Scheele TN, Massop M, van Hoogen P, et al. Clinical and biological impact of TET2 mutations and expression in younger adult AML patients treated within the EORTC/GIMEMA AML-12 clinical trial. Ann Hematol. 2014; 93:1401-1412.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Genetik (Kanser Genetiği hariç)
Bölüm Original Article
Yazarlar

Ozkan Bagci 0000-0002-9896-6764

Erken Görünüm Tarihi 29 Ağustos 2025
Yayımlanma Tarihi 29 Ağustos 2025
Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 28 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 35 Sayı: 4

Kaynak Göster

Vancouver Bagci O. Analysis of Somatic Mutations in Epigenetic Genes in Major Leukemia Subtypes. Genel Tıp Derg. 2025;35(4):746-58.