Araştırma Makalesi
BibTex RIS Kaynak Göster

OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ

Yıl 2022, , 616 - 629, 30.08.2022
https://doi.org/10.15237/gida.GD22031

Öz

Bu çalışmada, omega-3 yağ asitlerince zengin balık yağı (%5) ve Tween 80 (T80), Quillaja Saponin (QS), Gam Arabik (GA) sürfaktanları (%1) kullanılarak mikroakışkanlaştırıcı yardımı ile su içinde yağ (Y/S) nanoemülsiyonları hazırlanmıştır. Nanoemülsiyonların fiziksel stabiliteleri; pH (4-7), sıcaklık (40-80oC) ve iyonik şiddet (0-500 mM NaCl) etkisi ile belirlenmiştir. Nanoemülsiyonların partikül boyutlarının 125±0.40 ile 542±0.45 nm ve partikül yüklerinin −12.80±0.63 ile −69.1±0.14 mV aralığında olduğu tespit edilmiştir. T80 ve QS ile stabilize edilen nanoemülsiyonların farklı pH, sıcaklık ve iyonik şiddet koşullarında fiziksel stabilitelerinin değişmediği görülmüştür. GA ile stabilize edilmiş nanoemülsiyonların ise pH, sıcaklık ve iyonik şiddet etkisine nispeten hassas olduğu ancak fiziksel stabilitesinde önemli bir değişiklik olmadığı görülmüştür. Sonuç olarak, omega-3 ile zenginleştirilmiş fiziksel olarak stabil nanoemülsiyonlar hem sentetik (T80) hem de doğal (QS ve GA) sürfaktanlar kullanılarak üretilmiştir. Elde edilen bu sonuçların omega-3 yağ asidi ile zenginleştirilmiş gıda üretimi ile ilgili çalışmalara katkı sağlayacağı düşünülmektedir.

Destekleyen Kurum

Inönü Üniversitesi

Proje Numarası

FLY-2019-1348

Teşekkür

Bu çalışma FLY-2019-1348 nolu proje ile İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.

Kaynakça

  • Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. In Current Opinion in Colloid and Interface Science 14(1), 3–15. https://doi.org/10.1016/j.cocis.2008.01.002
  • Anton, N., Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. International Journal of Pharmaceutics, 377(1–2), 142–147. https://doi.org/10.1016/j.ijpharm.2009.05.014
  • Bai, L., Liu, F., Xu, X., Huan, S., Gu, J., McClements, D. J. (2017). Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 207, 35–45. https://doi.org/10.1016/j.jfoodeng.2017.03.021
  • Chang, Y., McClements, D. J. (2016). Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids, 61, 92–101. https://doi.org/10.1016/j.foodhyd.2016.04.047
  • Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Naivikul, O., McClements, D. J. (2011). Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil-in-Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. Journal of Food Science, 76(1), 165-72. . https://doi.org/10.1111/j.1750-3841.2010.01959.x
  • David Julian McClements. (2005). Food Emulsions Principles, Practices, and Techniques. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004
  • Deckelbaumb, R. A. R., R. J. (2007). Sources of the very-long-chain unsaturated omega-3 fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Current Opinion in Clinical Nutrition and Metabolic Care, 10(2), 123–128.
  • Din, J. N., Harding, S. A., Valerio, C. J., Sarma, J., Lyall, K., Riemersma, R. A., Newby, D. E., Flapan, A. D. (2008). Dietary intervention with oil rich fish reduces platelet-monocyte aggregation in man. Atherosclerosis, 197(1), 290–296. https://doi.org/10.1016/j.atherosclerosis.2007.04.047
  • Haahr, A., Jacobsen, C. (2008). Emulsifier type , metal chelation and pH affect oxidative stability of n -3-enriched emulsions.110(10), 949–961. https://doi.org/10.1002/ejlt.200800035
  • Helland, I. B., Smith, L., Saarem, K., Saugstad, O. D., Drevon, C. A. (2003). Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 111(1), 39–44. https://doi.org/10.1542/peds.111.1.e39
  • Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., Solans, C. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26–30. https://doi.org/10.1021/la010808c
  • Maki, K. C., Yurko-Mauro, K., Dicklin, M. R., Schild, A. L., Geohas, J. G. (2014). A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 91(4), 141–148. https://doi.org/10.1016/j.plefa.2014.07.012
  • McClements, D. J., Decker, E. A., Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, 72(8), 109–124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
  • McClements, David Julian. (2013). Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 52(4), 409–423. https://doi.org/10.1016/j.plipres.2013.04.008
  • McClements, David Julian, Gumus, C. E. (2016). Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 234, 3–26. https://doi.org/10.1016/j.cis.2016.03.002
  • McClements, David Julian, Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, properties, performance, Biological fate, and Potential Toxicity. In Critical Reviews in Food Science and Nutrition 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558
  • Ozturk, B., Argin, S., Ozilgen, M., McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin e delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. https://doi.org/10.1016/j.jfoodeng.2014.06.015
  • Patch, C. S., Brown, I. L. (2008). Long-chain omega-3 PUFAs and their role in healthy ageing. Chemistry in Australia, 75(10), 14–16.
  • Pottel, L., Lycke, M., Boterberg, T., Foubert, I., Pottel, H., Duprez, F., Goethals, L., Debruyne, P. R. (2014). Omega-3 fatty acids: Physiology, biological sources and potential applications in supportive cancer care. Phytochemistry Reviews, 13(1), 223–244. https://doi.org/10.1007/s11101-013-9309-1
  • Qian, C., Decker, E. A., Xiao, H., McClements, D. J. (2011). Comparison of biopolymer emulsifier performance in formation and stabilization of orange oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists’ Society, 88(1), 47–55. https://doi.org/10.1007/s11746-010-1658-y
  • Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449–459. https://doi.org/10.1111/j.1365-277X.2004.00552.x
  • Skall Nielsen, N., Debnath, D., Jacobsen, C. (2007). Oxidative stability of fish oil enriched drinking yoghurt. International Dairy Journal, 17(12), 1478–1485. https://doi.org/10.1016/j.idairyj.2007.04.011
  • Tadros, T., Izquierdo, P., Esquena, J., Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318. https://doi.org/10.1016/j.cis.2003.10.023
  • Tur, J. A., Bibiloni, M. M., Sureda, A., Pons, A. (2012). Dietary sources of omega 3 fatty acids: Public health risks and benefits. British Journal of Nutrition, 107(2), 23–52. https://doi.org/10.1017/S0007114512001456
  • Uluata, S., McClements, D. J., Decker, E. A. (2015). Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Journal of Agricultural and Food Chemistry, 63(42), 9333–9340. https://doi.org/10.1021/acs.jafc.5b03572
  • Walker, R., Decker, E. A., McClements, D. J. (2015). Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. In Food and Function 6(1), 42–55. https://doi.org/10.1039/c4fo00723a
  • Walker, R. M., Gumus, C. E., Decker, E. A., McClements, D. J. (2017). Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. Journal of Food Engineering, 211, 60–68. https://doi.org/10.1016/j.jfoodeng.2017.05.004
  • Waraho, T., Mcclements, D. J., Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. In Trends in Food Science and Technology 22(1), pp 3–13). https://doi.org/10.1016/j.tifs.2010.11.003
  • Yang, Y., Leser, M. E., Sher, A. A., McClements, D. J. (2013). Food Hydrocolloids Formation and stability of emulsions using a natural small molecule surfactant : Food Hydrocolloids, 30(2), 589–596. https://doi.org/10.1016/j.foodhyd.2012.08.008

DETERMINATION OF PHYSICAL STABILITY OF OMEGA-3 FATTY ACID NANOEMULSIONS AT DIFFERENT CONDITIONS

Yıl 2022, , 616 - 629, 30.08.2022
https://doi.org/10.15237/gida.GD22031

Öz

In this study, physical stability of omega-3 oil-in-water emulsion was investigated at different environmental conditions. Omega-3 oil (5%) and Tween 80 (T80), Quillaja Saponin (QS), Gam Arabic (GA) (1%) were used to produce oil-in water nanoemulsions. The physical stability of nanoemulsions were examined at different pH (4-7), temperature (40-80oC) and ionic strength (0-500 mM NaCl). The particles size of nanoemulsions were 125±0.40 to 542±1.70 nm, and the charge were −12.80±0.63 and −69.10±0.14 mV. It was observed that nanoemulsions containing T80 and QS were kinetically stable and the particle size/zeta potential did not change at different pH, temperature and salt concentrations. However, there was a small changes in the particle size of nanoemulsion containing GA at different conditions. As a result, physically stable nanoemulsions enriched with omega-3 were produced using both synthetic and natural surfactants. These results will be useful for the production of food enriched with omega-3 oils

Proje Numarası

FLY-2019-1348

Kaynakça

  • Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. In Current Opinion in Colloid and Interface Science 14(1), 3–15. https://doi.org/10.1016/j.cocis.2008.01.002
  • Anton, N., Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. International Journal of Pharmaceutics, 377(1–2), 142–147. https://doi.org/10.1016/j.ijpharm.2009.05.014
  • Bai, L., Liu, F., Xu, X., Huan, S., Gu, J., McClements, D. J. (2017). Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 207, 35–45. https://doi.org/10.1016/j.jfoodeng.2017.03.021
  • Chang, Y., McClements, D. J. (2016). Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids, 61, 92–101. https://doi.org/10.1016/j.foodhyd.2016.04.047
  • Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Naivikul, O., McClements, D. J. (2011). Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil-in-Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. Journal of Food Science, 76(1), 165-72. . https://doi.org/10.1111/j.1750-3841.2010.01959.x
  • David Julian McClements. (2005). Food Emulsions Principles, Practices, and Techniques. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004
  • Deckelbaumb, R. A. R., R. J. (2007). Sources of the very-long-chain unsaturated omega-3 fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Current Opinion in Clinical Nutrition and Metabolic Care, 10(2), 123–128.
  • Din, J. N., Harding, S. A., Valerio, C. J., Sarma, J., Lyall, K., Riemersma, R. A., Newby, D. E., Flapan, A. D. (2008). Dietary intervention with oil rich fish reduces platelet-monocyte aggregation in man. Atherosclerosis, 197(1), 290–296. https://doi.org/10.1016/j.atherosclerosis.2007.04.047
  • Haahr, A., Jacobsen, C. (2008). Emulsifier type , metal chelation and pH affect oxidative stability of n -3-enriched emulsions.110(10), 949–961. https://doi.org/10.1002/ejlt.200800035
  • Helland, I. B., Smith, L., Saarem, K., Saugstad, O. D., Drevon, C. A. (2003). Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 111(1), 39–44. https://doi.org/10.1542/peds.111.1.e39
  • Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., Solans, C. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26–30. https://doi.org/10.1021/la010808c
  • Maki, K. C., Yurko-Mauro, K., Dicklin, M. R., Schild, A. L., Geohas, J. G. (2014). A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 91(4), 141–148. https://doi.org/10.1016/j.plefa.2014.07.012
  • McClements, D. J., Decker, E. A., Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science, 72(8), 109–124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
  • McClements, David Julian. (2013). Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 52(4), 409–423. https://doi.org/10.1016/j.plipres.2013.04.008
  • McClements, David Julian, Gumus, C. E. (2016). Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 234, 3–26. https://doi.org/10.1016/j.cis.2016.03.002
  • McClements, David Julian, Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, properties, performance, Biological fate, and Potential Toxicity. In Critical Reviews in Food Science and Nutrition 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558
  • Ozturk, B., Argin, S., Ozilgen, M., McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin e delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. https://doi.org/10.1016/j.jfoodeng.2014.06.015
  • Patch, C. S., Brown, I. L. (2008). Long-chain omega-3 PUFAs and their role in healthy ageing. Chemistry in Australia, 75(10), 14–16.
  • Pottel, L., Lycke, M., Boterberg, T., Foubert, I., Pottel, H., Duprez, F., Goethals, L., Debruyne, P. R. (2014). Omega-3 fatty acids: Physiology, biological sources and potential applications in supportive cancer care. Phytochemistry Reviews, 13(1), 223–244. https://doi.org/10.1007/s11101-013-9309-1
  • Qian, C., Decker, E. A., Xiao, H., McClements, D. J. (2011). Comparison of biopolymer emulsifier performance in formation and stabilization of orange oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists’ Society, 88(1), 47–55. https://doi.org/10.1007/s11746-010-1658-y
  • Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449–459. https://doi.org/10.1111/j.1365-277X.2004.00552.x
  • Skall Nielsen, N., Debnath, D., Jacobsen, C. (2007). Oxidative stability of fish oil enriched drinking yoghurt. International Dairy Journal, 17(12), 1478–1485. https://doi.org/10.1016/j.idairyj.2007.04.011
  • Tadros, T., Izquierdo, P., Esquena, J., Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318. https://doi.org/10.1016/j.cis.2003.10.023
  • Tur, J. A., Bibiloni, M. M., Sureda, A., Pons, A. (2012). Dietary sources of omega 3 fatty acids: Public health risks and benefits. British Journal of Nutrition, 107(2), 23–52. https://doi.org/10.1017/S0007114512001456
  • Uluata, S., McClements, D. J., Decker, E. A. (2015). Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Journal of Agricultural and Food Chemistry, 63(42), 9333–9340. https://doi.org/10.1021/acs.jafc.5b03572
  • Walker, R., Decker, E. A., McClements, D. J. (2015). Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: Opportunities and obstacles in the food industry. In Food and Function 6(1), 42–55. https://doi.org/10.1039/c4fo00723a
  • Walker, R. M., Gumus, C. E., Decker, E. A., McClements, D. J. (2017). Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. Journal of Food Engineering, 211, 60–68. https://doi.org/10.1016/j.jfoodeng.2017.05.004
  • Waraho, T., Mcclements, D. J., Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. In Trends in Food Science and Technology 22(1), pp 3–13). https://doi.org/10.1016/j.tifs.2010.11.003
  • Yang, Y., Leser, M. E., Sher, A. A., McClements, D. J. (2013). Food Hydrocolloids Formation and stability of emulsions using a natural small molecule surfactant : Food Hydrocolloids, 30(2), 589–596. https://doi.org/10.1016/j.foodhyd.2012.08.008
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Zeynep Merve Abacı 0000-0002-5082-2104

Sibel Uluata 0000-0002-7451-9791

Proje Numarası FLY-2019-1348
Yayımlanma Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Abacı, Z. M., & Uluata, S. (2022). OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ. Gıda, 47(4), 616-629. https://doi.org/10.15237/gida.GD22031
AMA Abacı ZM, Uluata S. OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ. GIDA. Ağustos 2022;47(4):616-629. doi:10.15237/gida.GD22031
Chicago Abacı, Zeynep Merve, ve Sibel Uluata. “OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ”. Gıda 47, sy. 4 (Ağustos 2022): 616-29. https://doi.org/10.15237/gida.GD22031.
EndNote Abacı ZM, Uluata S (01 Ağustos 2022) OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ. Gıda 47 4 616–629.
IEEE Z. M. Abacı ve S. Uluata, “OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ”, GIDA, c. 47, sy. 4, ss. 616–629, 2022, doi: 10.15237/gida.GD22031.
ISNAD Abacı, Zeynep Merve - Uluata, Sibel. “OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ”. Gıda 47/4 (Ağustos 2022), 616-629. https://doi.org/10.15237/gida.GD22031.
JAMA Abacı ZM, Uluata S. OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ. GIDA. 2022;47:616–629.
MLA Abacı, Zeynep Merve ve Sibel Uluata. “OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ”. Gıda, c. 47, sy. 4, 2022, ss. 616-29, doi:10.15237/gida.GD22031.
Vancouver Abacı ZM, Uluata S. OMEGA-3 YAĞ ASİDİ NANOEMÜLSİYONLARININ FARKLI KOŞULLARDA FİZİKSEL STABİLİTELERİNİN BELİRLENMESİ. GIDA. 2022;47(4):616-29.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/