Araştırma Makalesi
BibTex RIS Kaynak Göster

LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON

Yıl 2021, , 1331 - 1342, 15.10.2021
https://doi.org/10.15237/gida.GD21059

Öz

Çalışmada, 31 Lactobacillus delbrueckii subsp. bulgaricus ve 34 Streptococcus thermophilus bakteri kültürlerinde, o-nitrofenil-beta-D-galaktosit (o-NPG) substrat olarak kullanılarak, β-galaktosidaz enzim ve spesifik aktiviteleri taranmıştır. L. delbrueckii subsp. bulgaricus suşları 0.186-6.500 U/mg arasında spesifik aktivite gösterirken, S. thermophilus suşları 0.172-5.064 U/mg arasında spesifik aktivite göstermiştir. L. delbrueckii subsp. bulgaricus ZN541 (6.500 U/mg) ve S. thermophilus Z1052 (5.064 U/mg) suşlarının yüksek spesifik aktivite yeteneğine sahip oldukları tespit edilmiştir. Yüksek spesifik β-galaktozidaz aktivitesi gösteren ZN541 ve Z1052 suşları seçilerek, farklı koşulların (pH, sıcaklık, laktoz konsantrasyonu ve fermantasyon süresi) bu suşlara ait β-galaktozidaz enzimlerin aktivitelerine etkileri belirlenmiştir. ZN541 suşunda optimum enzim aktivitesi için gereken pH’ın 6.2, sıcaklığın 42°C, laktoz konsantrasyonunun %2 ve fermantasyon süresinin 24 saat olduğu tespit edilmiştir. Z1052 suşunda ise optimum enzim aktivitesi için gereken pH’ın 6.8, sıcaklığın 42°C, laktoz konsantrasyonun %4 ve fermantasyon süresinin 24 saat olduğu belirlenmiştir.

Kaynakça

  • 1. Alves, F., Filho, F., Medeiros Burkert, J., Kalil, S. (2010). Maximization of β-Galactosidase production: A simultaneous ınvestigation of agitation and aeration effects. Appl Biochem Biotech, 160: 1528–1539.
  • 2. Carević, M., Vukašinović-Sekulić, M., Grbavčić, S., Stojanović, M., Mihailović, M. Dimitrijević, A., Bezbradica, D. (2015). Optimization of β-galactosidase production from lactic acid bacteria. Chem Ind, 69 (3): 305–312.
  • 3. Das, S., Mishra B.K., Hati, S. (2020). Effect of nutritional factors on growth behaviour, proteolytic, β-glucosidase and β-galactosidase activities of Lactobacillus cultures during soy-drink fermentation. Curr Res Nut Food Sci, 8 (3): 877-888.
  • 4. Delgado-Fernandez, P., Plaza-Vinuesa, L., Lizasoain-Sánchez, S., de las Rivas, B., Muñoz, R., Jimeno, M.L., García-Doyagüez, E., Moreno, F.J., Corzo, N. (2020). Hydrolysis of lactose and transglycosylation of selected sugar alcohols by LacA β‑galactosidase from Lactobacillus plantarum WCFS1. J Agric Food Chem, 68: 7040−7050.
  • 5. Deng, Y., Xu, M., Ji, D., Agyei, D. (2020) Optimization of β-galactosidase production by batch cultures of Lactobacillus leichmannii 313 (ATCC 7830). Fermentation, 6: 27.
  • 6. Gobinath, D. and Prapulla, S.G. (2015). Transgalactosylating β-galactosidase from probiotic Lactobacillus plantarum MCC2156: Production and permeabilization for use as whole cell biocatalyst. J Food Sci Technol, 52: 6003–6009.
  • 7. Gomaa, E.Z. (2018). Beta-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: Optimization, characterization and formation of galactooligosaccharides. Indian J Biotechnol, 17 (3): 407-415.
  • 8. Hsu, C.A., Yu, R.C., Chou, C.C. (2005). Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol, 104 (2): 197– 206.
  • 9. Ibrahim, A.H. (2018). Enhancement of β-galactosidase activity of lactic acid bacteria in fermented camel milk. J Food Agric, 30(4): 256-267.
  • 10. Inchaurrondo, V.A., Flores, M.V., Voget, C.E. (1998). Growth and β-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J Ind Microbiol Biotechnol, 20: 291–298.
  • 11. Ismail, S.A.A., El-Mohamady, Y., Helmy, W.A., Abou-Romia, R., Hashem, A.M. (2010). Cultural condition affecting the growth and production of β-galactosidase by Lactobacillus acidophilus NRRL 4495. Aust J Basic Appl Sci, 4 (10): 5051-5058.
  • 12. Kara F. (2004). Release and characterization of beta-galactosidase from Lactobacillus plantarum. M.C. Thesis, Department of Biotechnology, Middle East Technical University, 89p.
  • 13. Kılıç, Y. (2013). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktiviteleri. Gazi Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 103 s.
  • 14. Kılıç, Y., Yüksekdağ, Z.N., Yüksekdağ, H. (2014). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktivitelerinin belirlenmesi. GIDA, 39 (4): 211-218.
  • 15. Kim, J.W. and Rajagopal, S.N. (2000) Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiol, 45: 29–34.
  • 16. Kittibunchakul, S., van Leeuwen, S.S., Dijkhuizen, L., Haltrich, D., Nguyen. T.H. (2020). Structural comparison of different galacto-oligosaccharide mixtures formed by β‑Galactosidases from Lactic Acid Bacteria and Bifidobacteria. J Agric Food Chem, 68: 4437−4446.
  • 17. Mahadevaiah, S., Basavaiah, R., Parida, M., Batra, H.V. (2020). Optimal production of β-galactosidase from Lactobacillus fermentum for the synthesis of prebiotic galactooligosaccharides (GOS). J Pure Appl Microbiol, 14(4): 2769-2780.
  • 18. Makwana, S., Hati, S., Parmar, H., Aparnathi, K.D. (2017). Process optimization for the production of β-galactosidase using potential Lactobacillus cultures. Int J Curr Microbiol App Sci, 6(8): 1454-1469.
  • 19. Mozumder, N.H.M.R., Akhtaruzzaman, M., Bakr, M.A., Tuj-Zohra, F. (2012). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria ısolated from yogurt. J Sci Res, 4 (1): 239-249.
  • 20. Murad, H.A., Refaea, R.I., Aly, E.M. (2011). Utilization of UF-permeate for production of β-galactosidase by Lactic Acid Bacteria. Pol J Microbiol, 60: 139–144.
  • 21. Özkan, E.R., Demirci, T, Öztürk, H.İ., Akına, N. (2020). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agric, https://doi.org/10.1002/jsfa.10909.
  • 22. Panesar, P.S., Kumari, S., Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res, 473137.
  • 23. Princely, S., Basha, N.S., Kirubakaran, J.J., Dhanaraju, M.D. (2013). Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. Eur J Exp Biol, 3(2): 242-251.
  • 24. Serin, B ve Akcan, N. (2019). Katı faz fermantasyon tekniği ile Bacillus circulans ATCC 4516’dan ekstrasellüler β-galaktosidaz üretimi. KSU J Agric Nat, 22(3): 480-486.
  • 25. Shah, N.P. and Otieno, D.O. (2007). Endogenous β-glucosidase and β-galactosidase activities from selected probiotic microorganisms and their role in isoflavone biotransformation in soymilk. J Appl Microbiol, 103 (4): 910-917.
  • 26. Son, S.H., Jeon, H.L., Jeon, E.B., Lee, N.K., Park, Y.S., Kang, D.K., Paik, H.D. (2017). Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci Technol, 85: 181-186.
  • 27. Ustok, F.I., Tari, C., Harsa, S. (2010). Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem, 119: 1114–1120.
  • 28. Venkateswarulu, T.C., Prabhakar, K.V., Kumar, R.B. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech, 7: 202.
  • 29. Wheatley, R.W., Lo, S., Jancewicz, L.J., Dugdale, M.L., Huber, R.E. (2013). Structural explanation for allolactose (lac operon inducer) synthesis by lacz-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem, 288: 12993–13005.
  • 30. Xin, Y., Guo, T., Zhang, Y., Wu, J., Kong, J. (2019). A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol, 103(20): 8439-8448.
  • 31. Yu, P., Li, N., Geng, M., Liu, Z., Liu X., Zhang, H., Zhao, J., Zhang, H., Chen W. (2020). Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease. J Dairy Sci, 103 (1), 166–171.
  • 32. Zhang, H., Li, W, Rui, X., Sun, X., Dong, M. (2013). Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur Food Res Technol, 236: 817–826.
  • 33. Zhang, W., Wang, C., Huang, C.Y., Yu, Q., Liu, H.C., Zhang, C.W., Pei, X.F., Xu, X., Wang, G.Q. (2012). Analysis of β-galactosidase production and their genes of two strains of Lactobacillus bulgaricus. Biotechnol Lett, 34 (6): 1067-1071.

BETA GALACTOSIDASE ACTIVITY IN LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 AND STREPTOCOCCUS THERMOPHILUS Z1052 STRAINS AND OPTIMIZATION

Yıl 2021, , 1331 - 1342, 15.10.2021
https://doi.org/10.15237/gida.GD21059

Öz

In this study, thirty-one Lactobacillus delbrueckii subsp. bulgaricus and thirty-four Streptococcus thermophilus were screened for β-galactosidase enzyme activities and specific activities. The β-galactosidase enzyme activities were determined by using o-nitrophenyl-beta-D-galactopyranoside (o-NPG) as a substrate. L. delbrueckii bulgaricus strains showed specific activity between 0.186-6.500 U/mg, while S. thermophilus strains exhibited specific activity between 0.172-5.064 U/mg. The highest specific enzyme activities among bacteria cultures were determined at L. delbrueckii subsp. bulgaricus ZN541 (6.500 U/mg) and S. thermophilus Z1052 (5.064 U/mg) strains. The ZN541 and Z1052 strains that showed high specific β-galactosidase activity were selected and the effects of different conditions (pH, temperature, lactose concentration, and fermentation time) on the activities of β-galactosidase enzymes of these strains were determined. It was determined that the pH required for optimum enzyme activity in ZN541 strain was 6.2, the temperature was 42°C, the lactose concentration was 2% and the fermentation time was 24 hours. In the Z1052 strain, the pH required for optimum enzyme activity was 6.8, the temperature was 42°C, the lactose concentration was 4%, and the fermentation time was 24 hours.

Kaynakça

  • 1. Alves, F., Filho, F., Medeiros Burkert, J., Kalil, S. (2010). Maximization of β-Galactosidase production: A simultaneous ınvestigation of agitation and aeration effects. Appl Biochem Biotech, 160: 1528–1539.
  • 2. Carević, M., Vukašinović-Sekulić, M., Grbavčić, S., Stojanović, M., Mihailović, M. Dimitrijević, A., Bezbradica, D. (2015). Optimization of β-galactosidase production from lactic acid bacteria. Chem Ind, 69 (3): 305–312.
  • 3. Das, S., Mishra B.K., Hati, S. (2020). Effect of nutritional factors on growth behaviour, proteolytic, β-glucosidase and β-galactosidase activities of Lactobacillus cultures during soy-drink fermentation. Curr Res Nut Food Sci, 8 (3): 877-888.
  • 4. Delgado-Fernandez, P., Plaza-Vinuesa, L., Lizasoain-Sánchez, S., de las Rivas, B., Muñoz, R., Jimeno, M.L., García-Doyagüez, E., Moreno, F.J., Corzo, N. (2020). Hydrolysis of lactose and transglycosylation of selected sugar alcohols by LacA β‑galactosidase from Lactobacillus plantarum WCFS1. J Agric Food Chem, 68: 7040−7050.
  • 5. Deng, Y., Xu, M., Ji, D., Agyei, D. (2020) Optimization of β-galactosidase production by batch cultures of Lactobacillus leichmannii 313 (ATCC 7830). Fermentation, 6: 27.
  • 6. Gobinath, D. and Prapulla, S.G. (2015). Transgalactosylating β-galactosidase from probiotic Lactobacillus plantarum MCC2156: Production and permeabilization for use as whole cell biocatalyst. J Food Sci Technol, 52: 6003–6009.
  • 7. Gomaa, E.Z. (2018). Beta-galactosidase from Lactobacillus delbrueckii and Lactobacillus reuteri: Optimization, characterization and formation of galactooligosaccharides. Indian J Biotechnol, 17 (3): 407-415.
  • 8. Hsu, C.A., Yu, R.C., Chou, C.C. (2005). Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol, 104 (2): 197– 206.
  • 9. Ibrahim, A.H. (2018). Enhancement of β-galactosidase activity of lactic acid bacteria in fermented camel milk. J Food Agric, 30(4): 256-267.
  • 10. Inchaurrondo, V.A., Flores, M.V., Voget, C.E. (1998). Growth and β-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J Ind Microbiol Biotechnol, 20: 291–298.
  • 11. Ismail, S.A.A., El-Mohamady, Y., Helmy, W.A., Abou-Romia, R., Hashem, A.M. (2010). Cultural condition affecting the growth and production of β-galactosidase by Lactobacillus acidophilus NRRL 4495. Aust J Basic Appl Sci, 4 (10): 5051-5058.
  • 12. Kara F. (2004). Release and characterization of beta-galactosidase from Lactobacillus plantarum. M.C. Thesis, Department of Biotechnology, Middle East Technical University, 89p.
  • 13. Kılıç, Y. (2013). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktiviteleri. Gazi Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye, 103 s.
  • 14. Kılıç, Y., Yüksekdağ, Z.N., Yüksekdağ, H. (2014). Lactobacillus ve Bifidobacterium cinsi bakterilerin beta galaktosidaz enzim aktivitelerinin belirlenmesi. GIDA, 39 (4): 211-218.
  • 15. Kim, J.W. and Rajagopal, S.N. (2000) Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiol, 45: 29–34.
  • 16. Kittibunchakul, S., van Leeuwen, S.S., Dijkhuizen, L., Haltrich, D., Nguyen. T.H. (2020). Structural comparison of different galacto-oligosaccharide mixtures formed by β‑Galactosidases from Lactic Acid Bacteria and Bifidobacteria. J Agric Food Chem, 68: 4437−4446.
  • 17. Mahadevaiah, S., Basavaiah, R., Parida, M., Batra, H.V. (2020). Optimal production of β-galactosidase from Lactobacillus fermentum for the synthesis of prebiotic galactooligosaccharides (GOS). J Pure Appl Microbiol, 14(4): 2769-2780.
  • 18. Makwana, S., Hati, S., Parmar, H., Aparnathi, K.D. (2017). Process optimization for the production of β-galactosidase using potential Lactobacillus cultures. Int J Curr Microbiol App Sci, 6(8): 1454-1469.
  • 19. Mozumder, N.H.M.R., Akhtaruzzaman, M., Bakr, M.A., Tuj-Zohra, F. (2012). Study on isolation and partial purification of lactase (β-galactosidase) enzyme from Lactobacillus bacteria ısolated from yogurt. J Sci Res, 4 (1): 239-249.
  • 20. Murad, H.A., Refaea, R.I., Aly, E.M. (2011). Utilization of UF-permeate for production of β-galactosidase by Lactic Acid Bacteria. Pol J Microbiol, 60: 139–144.
  • 21. Özkan, E.R., Demirci, T, Öztürk, H.İ., Akına, N. (2020). Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agric, https://doi.org/10.1002/jsfa.10909.
  • 22. Panesar, P.S., Kumari, S., Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res, 473137.
  • 23. Princely, S., Basha, N.S., Kirubakaran, J.J., Dhanaraju, M.D. (2013). Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. Eur J Exp Biol, 3(2): 242-251.
  • 24. Serin, B ve Akcan, N. (2019). Katı faz fermantasyon tekniği ile Bacillus circulans ATCC 4516’dan ekstrasellüler β-galaktosidaz üretimi. KSU J Agric Nat, 22(3): 480-486.
  • 25. Shah, N.P. and Otieno, D.O. (2007). Endogenous β-glucosidase and β-galactosidase activities from selected probiotic microorganisms and their role in isoflavone biotransformation in soymilk. J Appl Microbiol, 103 (4): 910-917.
  • 26. Son, S.H., Jeon, H.L., Jeon, E.B., Lee, N.K., Park, Y.S., Kang, D.K., Paik, H.D. (2017). Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci Technol, 85: 181-186.
  • 27. Ustok, F.I., Tari, C., Harsa, S. (2010). Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem, 119: 1114–1120.
  • 28. Venkateswarulu, T.C., Prabhakar, K.V., Kumar, R.B. (2017). Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech, 7: 202.
  • 29. Wheatley, R.W., Lo, S., Jancewicz, L.J., Dugdale, M.L., Huber, R.E. (2013). Structural explanation for allolactose (lac operon inducer) synthesis by lacz-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. J Biol Chem, 288: 12993–13005.
  • 30. Xin, Y., Guo, T., Zhang, Y., Wu, J., Kong, J. (2019). A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol, 103(20): 8439-8448.
  • 31. Yu, P., Li, N., Geng, M., Liu, Z., Liu X., Zhang, H., Zhao, J., Zhang, H., Chen W. (2020). Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease. J Dairy Sci, 103 (1), 166–171.
  • 32. Zhang, H., Li, W, Rui, X., Sun, X., Dong, M. (2013). Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur Food Res Technol, 236: 817–826.
  • 33. Zhang, W., Wang, C., Huang, C.Y., Yu, Q., Liu, H.C., Zhang, C.W., Pei, X.F., Xu, X., Wang, G.Q. (2012). Analysis of β-galactosidase production and their genes of two strains of Lactobacillus bulgaricus. Biotechnol Lett, 34 (6): 1067-1071.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Hazer Yüksekdağ 0000-0001-7953-2920

Zehranur Yuksekdag 0000-0002-0381-5876

Yayımlanma Tarihi 15 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yüksekdağ, H., & Yuksekdag, Z. (2021). LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON. Gıda, 46(6), 1331-1342. https://doi.org/10.15237/gida.GD21059
AMA Yüksekdağ H, Yuksekdag Z. LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON. GIDA. Ekim 2021;46(6):1331-1342. doi:10.15237/gida.GD21059
Chicago Yüksekdağ, Hazer, ve Zehranur Yuksekdag. “LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON”. Gıda 46, sy. 6 (Ekim 2021): 1331-42. https://doi.org/10.15237/gida.GD21059.
EndNote Yüksekdağ H, Yuksekdag Z (01 Ekim 2021) LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON. Gıda 46 6 1331–1342.
IEEE H. Yüksekdağ ve Z. Yuksekdag, “LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON”, GIDA, c. 46, sy. 6, ss. 1331–1342, 2021, doi: 10.15237/gida.GD21059.
ISNAD Yüksekdağ, Hazer - Yuksekdag, Zehranur. “LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON”. Gıda 46/6 (Ekim 2021), 1331-1342. https://doi.org/10.15237/gida.GD21059.
JAMA Yüksekdağ H, Yuksekdag Z. LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON. GIDA. 2021;46:1331–1342.
MLA Yüksekdağ, Hazer ve Zehranur Yuksekdag. “LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON”. Gıda, c. 46, sy. 6, 2021, ss. 1331-42, doi:10.15237/gida.GD21059.
Vancouver Yüksekdağ H, Yuksekdag Z. LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS ZN541 VE STREPTOCOCCUS THERMOPHILUS Z1052 SUŞLARINDA BETA GALAKTOZİDAZ AKTİVİTESİ VE OPTİMİZASYON. GIDA. 2021;46(6):1331-42.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/