Araştırma Makalesi
BibTex RIS Kaynak Göster

BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI

Yıl 2017, Cilt: 42 Sayı: 3, 211 - 218, 15.06.2017

Öz

Bu çalışmada, bazı içeceklerde titrasyon
asitliğinin tayini için kullanılabilecek zofenopril kalsiyum’a (ZFNCa) dayanan
yeni bir PVC membran
pH elektrot geliştirilmiştir Elektrot, 20±1 °C’de, 1.7–9.5 pH aralığında, 44.1±1.7 mV/pH’lik bir
eğim göstermektedir. Ayrıca, bu elektrodun, 15 s’lik cevap süresi ve en az 12
aylık ömürle, iyi bir tekrarlanabilirliğe ve yeniden üretilebilirliğe sahip
olduğu gözlenmiştir. Aynı zamanda, çeşitli iyonlar varlığında
H+ iyonuna karşı iyi bir seçicilik gösterdiği belirlenmiştir.
Önerilen elektrot kullanılarak, bazı içeceklerdeki (portakal suyu, elma suyu,
gazlı içecek, bira, şarap ve sirke)
titrasyon asitliğinin tayininin yapılabileceği gösterilmiştir. Bulunan
sonuçlar geleneksel cam pH elektrotla elde edilenlerle karşılaştırıldığında,
%95 GS’de (güven seviyesi), aralarında anlamlı bir fark olmadığı
belirlenmiştir. Sonuç olarak, ZFNCa’a dayanan bu elektrodun, içeceklerdeki titrasyon
asitliği tayininde cam elektroda alternatif olarak başarıyla kullanılabildiği
görülmüştür.

Kaynakça

  • 1. Cemeroğlu B.S (ed). 2013. Gıda Analizleri. Bizim Grup Basımevi Ajans Tan. Org. Yay. Dağ.San. Tic. Ltd. Şti. Ankara, Türkiye, 475 s.
  • 2. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct Detection of Acidity, Alkalinity, and pH with Membrane. Anal. Chem., 84, 10165-10169.
  • 3. Tayfur M (ed). 2014. Gıda Katkı Maddeleri. Detay Yayıncılık Ankara, Türkiye, 230 s.
  • 4. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 5. Peng L.B., Heng L.Y., Hasbullah S.A., Ahmad M. 2007. A solid-state pH transducer fabricated from a self-plasticized methacrylic-acrylic membrane for potentiometric acetylcholine chloride biosensor. J. Anal. Chem., 62, 884-888.
  • 6. Kim B., Shim J., Chung K.C. 2011.Study on hydrogen ion-selective solid contact electrodes based on decamethylcyclopentasiloxane, Anal. Lett., 44, 2138-2149.
  • 7. Crespo G.A., Gugsa D., Macho S., Rius F. X. 2009. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal. Bioanal. Chem., 395, 2371-2376.
  • 8. Michalska A., Hulanicki A., Lewenstam A. 1994. All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst, 119, 2417-2420.
  • 9. Faria R.C., Bulhões L.O.S. 1998. Hydrogen ion selective electrode based on poly(1-aminoanthracene) film. Anal. Chim. Acta, 377, 21-27.
  • 10. Zine N., Bausells J., Ivorra A., Aguiló J., Zabala M., Teixidor F., Masalles C., Viñas C., Errachid A. 2003. Hydrogen-selective microelectrodes based on silicon needles. Sensor Actuat B, 91, 76-82.
  • 11. Han W.S., Chung K.C., Kim M.H., Ko H.B., Lee Y.H., Hong T.K. 2004. A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine ionophore for highly acidic solutions, Anal. Sci., 20, 1419-1422.
  • 12. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K. 2001. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanal., 13, 955-959.
  • 13. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K., 2001. Potentiometric sensor for hydrogen ion based on N,N'-dialkylbenzylethylenediamine neutral carrier in a poly(vinyl chloride) membrane with polyaniline solid contact. Talanta, 54, 153-159.
  • 14. Alexander P.W., Dimitrakopoulos T., Hibbert D.B. 1997. Photo-cured ammonium and hydrogen ion selective coated-wire electrodes used simultaneously in a portable battery-powered flow injection analyzer. Electroanal., 9, 1331-1336.
  • 15. Ahn J.H., Kim J.Y., Seol M.L., Baek D.J., Guo Z., Kim C.H., Choi S.J., Choi Y.K. 2013. A pH sensor with a double-gate silicon nanowire field-effect transistor, Appl. Phys. Lett., 102, 1-5.
  • 16. Chien Y.S., Tsai W.L., Lee I.C., Chou J.C., Cheng H.C. 2012. A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network, IEEE Electron Devise Lett., 33, 1622-1624.
  • 17. Kashif M., Ali M.E., Ali S.M.U., Hashim U., Hamid S.B.A. 2013. Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods, Nanoscale Res. Lett., 8, 68-77.
  • 18. Zakharova G.S., Podval’naya N.V. 2013. Bifunctional potentiometric sensor based on MoO3 nanorods. J. Anal. Chem., 68, 50-56.
  • 19. Lutov V.M., Mikhelson K.N. 1994. A new pH sensor with a PVC membrane: analytical evaluation and mechanistic aspects. Sensor Actuat B, 18, 400-403.
  • 20. Arvand M., Ghaiuri K. 2009. Batch and flow measurement of hydrogen ions in highly acidic media using 2-(4-methoxy phenyl) 6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0] hex-3-ene as an H+-selective ionophore. Talanta, 79, 863-870.
  • 21. Chojnacki J., Biernat J.F. 1990. Application of azoles as neutral carriers in liquid membrane ion-selective pH electrodes. J Electroanal Chem, 277, 159-164.
  • 22. Nurminen K., Outinen-Y L., Narkilahti S., Lekkala J. 2010. A capillary pH electrode for evaluating long term culturing of neural cell populations. Procedia Engineering, 5 544-547.
  • 23. Cho D.H., Chung K.C., Jeong S.S., Park M.Y. 2000. Potentiometric behavior of N,N,N',N'-tetrabenzylmethylenediamine-based hydrogen ion-selective electrodes. Talanta, 51, 761-767.
  • 24. Cho D.H., Chung K.C., Park M.Y. 1998. Hydrogen ion-selective membrane electrodes based on alkyldibenzylamines as neutral carriers, Talanta, 47, 815-821.
  • 25. Joung K.I., Yoon H.J., Nam H., Paeng K.J. 2001. Development of pH sensor based on aromatic polyurethane matrix. Microchem. J., 68, 115-120.
  • 26. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct detection of acidity, alkalinity, and pH with membrane electrodes. Anal. Chem., 84, 10165-10169.
  • 27. Lindner E., Cosofret V.V, Kusy R.P., Buck R.P. 1993. Responses of H+ selective solvent polymeric membrane electrodes fabricated from modified PVC membranes. Talanta, 40, 957-967.
  • 28. Langmaier J., Lindner E. 2005. Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Anal. Chim. Acta, 543, 156-176.
  • 29. Kothur R.R., Hall J., Patel B.A., Leong C.L., Boutelle M.G., Cragg P.J. 2014. A low pH sensor from an esterified pillar[5]arene. Chem. Commun., 50, 852-854.
  • 30. Liu X.J., Peng B., Liu F., Qin Y. 2007. Potentiometric liquid membrane pH sensors based on calix[4]-aza-crowns. Sensor Actuat B, 125, 656-663.
  • 31. Kuruoğlu D., Canel E., Memon S., Yılmaz M., Kılıc E. 2003. Hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix[4]arene. Anal. Sci., 19, 217-221.
  • 32. Demirel, A., Doğan, A., Canel, E., Memon, S., Yılmaz, M., Kılıç, E. 2004. Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta, 62, 123-129.
  • 33. Kormalı Ertürün H. E., Demirel Özel A., Sayın S., Yılmaz M., Kılıç E. 2015. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative. Talanta, 132, 669–675.
  • 34. Ping J., Wang Y., Wu J., Ying Y., Ji F. 2012. A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchim. Acta, 176, 229-234.
  • 35. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 36. Michalak, M., Kurel M.; Jedraszko J., Toczydlowska D., Wittstock G., Opallo M., Nogala W. 2015.Voltammetric pH Nanosensor. Anal. Chem., 87 (23), 11641-11645.
  • 37. Taşdemir, İ.H., Kılıç, E. 2014. Reduction Pathways of Zofenopril Based on Experimental and Computational Approach and its Voltammetric Determination. Int. J. Electrochem. Sci., 9, 1758 – 1770.
  • 38. Anon 2002. Meyve ve Sebze Ürünleri Titre Edilebilir Asitlik Tayini, TS 1125 ISO 750. Türk Standartları Enstitüsü, Ankara.
  • 39. Zolotov, Y. A. 1997. Macrocyclic Compounds in Analytical Chemistry. John Wiley and Sons Ltd., USA, 448s.
  • 40. Choi Y.W., Minoura N., Moon S.H. 2005. Potentiometric Cr(VI)-Selective Electrode Based on Novel Ionophore-Immobilized PVC Membranes. Talanta, 66, 1254-1263.
  • 41. Schaller U., Bakker E., Spichiger E., Pretsch E. 1994. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem., 66, 391-398.
  • 42. Eugster R., Gehrig P.M., Morf W.E., Spichiger U.E., Simon W. 1991. Selectivity-modifying influence of anionic sites in neutral carrier-based membrane electrodes. Anal. Chem., 63, 2285-2289.

CONSTRUCTION OF A pH ELECTRODE BASED ON ZOFENOPRIL CALCIUM FOR THE DETERMINATION OF TITRATABLE ACIDITY IN SOME BEVERAGES

Yıl 2017, Cilt: 42 Sayı: 3, 211 - 218, 15.06.2017

Öz

In this study, a
new PVC membrane
pH electrode based
on zofenopril calcium (ZFNCa) available for the determination of titratable
acidity in some beverages was developed.
The electrode exhibited a slope of 44.1±1.7 mV/pH in the pH range
1.7–9.5 at 20
±1 °C. Furthermore,
it was observed that the electrode had good repeatability and reproducibility with
a response time of 15 s and a lifetime of at least 12 months. Also, it was
found to display good selectivity for H+ ions in the presence of
various ions. The applicability of the proposed electrode for the determination
of
titratable acidity in some beverages
(orange juice, apple juice, fizzy drink, beer, wine and vinegar) was
illustrated. It was seen that
there were no significant differences
between the results obtained with the proposed electrode and the
traditional glass pH electrode at the 95% CL (confidence level). As a consequence, it
was seen that the electrode based on ZFNCa could be successfully used as an alternative for glass electrode to determine
the
titratable acidity in beverages

Kaynakça

  • 1. Cemeroğlu B.S (ed). 2013. Gıda Analizleri. Bizim Grup Basımevi Ajans Tan. Org. Yay. Dağ.San. Tic. Ltd. Şti. Ankara, Türkiye, 475 s.
  • 2. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct Detection of Acidity, Alkalinity, and pH with Membrane. Anal. Chem., 84, 10165-10169.
  • 3. Tayfur M (ed). 2014. Gıda Katkı Maddeleri. Detay Yayıncılık Ankara, Türkiye, 230 s.
  • 4. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 5. Peng L.B., Heng L.Y., Hasbullah S.A., Ahmad M. 2007. A solid-state pH transducer fabricated from a self-plasticized methacrylic-acrylic membrane for potentiometric acetylcholine chloride biosensor. J. Anal. Chem., 62, 884-888.
  • 6. Kim B., Shim J., Chung K.C. 2011.Study on hydrogen ion-selective solid contact electrodes based on decamethylcyclopentasiloxane, Anal. Lett., 44, 2138-2149.
  • 7. Crespo G.A., Gugsa D., Macho S., Rius F. X. 2009. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal. Bioanal. Chem., 395, 2371-2376.
  • 8. Michalska A., Hulanicki A., Lewenstam A. 1994. All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst, 119, 2417-2420.
  • 9. Faria R.C., Bulhões L.O.S. 1998. Hydrogen ion selective electrode based on poly(1-aminoanthracene) film. Anal. Chim. Acta, 377, 21-27.
  • 10. Zine N., Bausells J., Ivorra A., Aguiló J., Zabala M., Teixidor F., Masalles C., Viñas C., Errachid A. 2003. Hydrogen-selective microelectrodes based on silicon needles. Sensor Actuat B, 91, 76-82.
  • 11. Han W.S., Chung K.C., Kim M.H., Ko H.B., Lee Y.H., Hong T.K. 2004. A hydrogen ion-selective poly(aniline) solid contact electrode based on dibenzylpyrenemethylamine ionophore for highly acidic solutions, Anal. Sci., 20, 1419-1422.
  • 12. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K. 2001. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanal., 13, 955-959.
  • 13. Han W.S., Park M.Y., Chung K.C., Cho K.C., Hong T.K., 2001. Potentiometric sensor for hydrogen ion based on N,N'-dialkylbenzylethylenediamine neutral carrier in a poly(vinyl chloride) membrane with polyaniline solid contact. Talanta, 54, 153-159.
  • 14. Alexander P.W., Dimitrakopoulos T., Hibbert D.B. 1997. Photo-cured ammonium and hydrogen ion selective coated-wire electrodes used simultaneously in a portable battery-powered flow injection analyzer. Electroanal., 9, 1331-1336.
  • 15. Ahn J.H., Kim J.Y., Seol M.L., Baek D.J., Guo Z., Kim C.H., Choi S.J., Choi Y.K. 2013. A pH sensor with a double-gate silicon nanowire field-effect transistor, Appl. Phys. Lett., 102, 1-5.
  • 16. Chien Y.S., Tsai W.L., Lee I.C., Chou J.C., Cheng H.C. 2012. A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network, IEEE Electron Devise Lett., 33, 1622-1624.
  • 17. Kashif M., Ali M.E., Ali S.M.U., Hashim U., Hamid S.B.A. 2013. Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods, Nanoscale Res. Lett., 8, 68-77.
  • 18. Zakharova G.S., Podval’naya N.V. 2013. Bifunctional potentiometric sensor based on MoO3 nanorods. J. Anal. Chem., 68, 50-56.
  • 19. Lutov V.M., Mikhelson K.N. 1994. A new pH sensor with a PVC membrane: analytical evaluation and mechanistic aspects. Sensor Actuat B, 18, 400-403.
  • 20. Arvand M., Ghaiuri K. 2009. Batch and flow measurement of hydrogen ions in highly acidic media using 2-(4-methoxy phenyl) 6-(4-nitrophenyl)-4-phenyl-1,3-diazabicyclo [3.1.0] hex-3-ene as an H+-selective ionophore. Talanta, 79, 863-870.
  • 21. Chojnacki J., Biernat J.F. 1990. Application of azoles as neutral carriers in liquid membrane ion-selective pH electrodes. J Electroanal Chem, 277, 159-164.
  • 22. Nurminen K., Outinen-Y L., Narkilahti S., Lekkala J. 2010. A capillary pH electrode for evaluating long term culturing of neural cell populations. Procedia Engineering, 5 544-547.
  • 23. Cho D.H., Chung K.C., Jeong S.S., Park M.Y. 2000. Potentiometric behavior of N,N,N',N'-tetrabenzylmethylenediamine-based hydrogen ion-selective electrodes. Talanta, 51, 761-767.
  • 24. Cho D.H., Chung K.C., Park M.Y. 1998. Hydrogen ion-selective membrane electrodes based on alkyldibenzylamines as neutral carriers, Talanta, 47, 815-821.
  • 25. Joung K.I., Yoon H.J., Nam H., Paeng K.J. 2001. Development of pH sensor based on aromatic polyurethane matrix. Microchem. J., 68, 115-120.
  • 26. Crespo G.A., Afshar M.G., Bakker E. 2012. Direct detection of acidity, alkalinity, and pH with membrane electrodes. Anal. Chem., 84, 10165-10169.
  • 27. Lindner E., Cosofret V.V, Kusy R.P., Buck R.P. 1993. Responses of H+ selective solvent polymeric membrane electrodes fabricated from modified PVC membranes. Talanta, 40, 957-967.
  • 28. Langmaier J., Lindner E. 2005. Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Anal. Chim. Acta, 543, 156-176.
  • 29. Kothur R.R., Hall J., Patel B.A., Leong C.L., Boutelle M.G., Cragg P.J. 2014. A low pH sensor from an esterified pillar[5]arene. Chem. Commun., 50, 852-854.
  • 30. Liu X.J., Peng B., Liu F., Qin Y. 2007. Potentiometric liquid membrane pH sensors based on calix[4]-aza-crowns. Sensor Actuat B, 125, 656-663.
  • 31. Kuruoğlu D., Canel E., Memon S., Yılmaz M., Kılıc E. 2003. Hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix[4]arene. Anal. Sci., 19, 217-221.
  • 32. Demirel, A., Doğan, A., Canel, E., Memon, S., Yılmaz, M., Kılıç, E. 2004. Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta, 62, 123-129.
  • 33. Kormalı Ertürün H. E., Demirel Özel A., Sayın S., Yılmaz M., Kılıç E. 2015. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative. Talanta, 132, 669–675.
  • 34. Ping J., Wang Y., Wu J., Ying Y., Ji F. 2012. A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchim. Acta, 176, 229-234.
  • 35. Ansari R., Arvand M., Heydari L. 2014. The behaviour of polyaniline-coated PVC membrane based on 7,16-didecyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane for pH measurements in highly acidic media. J. Chem. Sci., 126, 41-48.
  • 36. Michalak, M., Kurel M.; Jedraszko J., Toczydlowska D., Wittstock G., Opallo M., Nogala W. 2015.Voltammetric pH Nanosensor. Anal. Chem., 87 (23), 11641-11645.
  • 37. Taşdemir, İ.H., Kılıç, E. 2014. Reduction Pathways of Zofenopril Based on Experimental and Computational Approach and its Voltammetric Determination. Int. J. Electrochem. Sci., 9, 1758 – 1770.
  • 38. Anon 2002. Meyve ve Sebze Ürünleri Titre Edilebilir Asitlik Tayini, TS 1125 ISO 750. Türk Standartları Enstitüsü, Ankara.
  • 39. Zolotov, Y. A. 1997. Macrocyclic Compounds in Analytical Chemistry. John Wiley and Sons Ltd., USA, 448s.
  • 40. Choi Y.W., Minoura N., Moon S.H. 2005. Potentiometric Cr(VI)-Selective Electrode Based on Novel Ionophore-Immobilized PVC Membranes. Talanta, 66, 1254-1263.
  • 41. Schaller U., Bakker E., Spichiger E., Pretsch E. 1994. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem., 66, 391-398.
  • 42. Eugster R., Gehrig P.M., Morf W.E., Spichiger U.E., Simon W. 1991. Selectivity-modifying influence of anionic sites in neutral carrier-based membrane electrodes. Anal. Chem., 63, 2285-2289.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

H. Elif Kormalı Ertürün Bu kişi benim

Yayımlanma Tarihi 15 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 42 Sayı: 3

Kaynak Göster

APA Kormalı Ertürün, H. E. (2017). BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI. Gıda, 42(3), 211-218.
AMA Kormalı Ertürün HE. BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI. GIDA. Mayıs 2017;42(3):211-218.
Chicago Kormalı Ertürün, H. Elif. “BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN PH ELEKTROT YAPIMI”. Gıda 42, sy. 3 (Mayıs 2017): 211-18.
EndNote Kormalı Ertürün HE (01 Mayıs 2017) BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI. Gıda 42 3 211–218.
IEEE H. E. Kormalı Ertürün, “BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI”, GIDA, c. 42, sy. 3, ss. 211–218, 2017.
ISNAD Kormalı Ertürün, H. Elif. “BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN PH ELEKTROT YAPIMI”. Gıda 42/3 (Mayıs 2017), 211-218.
JAMA Kormalı Ertürün HE. BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI. GIDA. 2017;42:211–218.
MLA Kormalı Ertürün, H. Elif. “BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN PH ELEKTROT YAPIMI”. Gıda, c. 42, sy. 3, 2017, ss. 211-8.
Vancouver Kormalı Ertürün HE. BAZI İÇECEKLERDE TİTRASYON ASİTLİĞİNİN TAYİNİ İÇİN ZOFENOPRİL KALSİYUMA DAYANAN pH ELEKTROT YAPIMI. GIDA. 2017;42(3):211-8.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/