DEVELOPMENT OF BIODEGRADABLE ACTIVE FOOD PACKAGING FROM AGRICULTURAL WASTES: PRODUCTION, CHARACTERIZATION, AND APPLICATION OF FILMS WITH BANANA PEEL AND OLIVE LEAF EXTRACT
Yıl 2024,
Cilt: 49 Sayı: 6, 1109 - 1125, 09.12.2024
Eda Yıldız
,
Nur Kuş
,
Selen Guner San
,
Servet Gülüm Şumnu
Öz
The objective of this study is to produce a biodegradable active food package by using agricultural wastes; banana peel and olive leaf extract (OLE). To investigate the possible effect of plasticized starch at different concentrations (0%, 5%, 10%, and 15%), corn starch was added to the films. The films were analyzed in terms of physical characteristics (moisture content, swelling degree, water solubility, density, opacity), water vapor permeability, and mechanical properties. In addition, the phenolic content and antioxidant activity of the films were measured and antimicrobial activity of the films were tested on common food-borne pathogens. Films with better characteristics (B_S15_OLE) were selected to investigate the possible influence of the active films on shelf life of strawberries. Finally, it was shown that at the end of 10days, the films were almost completely decomposed.
Proje Numarası
1919B01234717
Kaynakça
- ASTME962005 Standard test method for water vapour transmission of materials
- Amaregouda, Y., Kamanna, K., Gasti, T. (2022). Biodegradable Polyvinyl Alcohol/Carboxymethyl Cellulose Composite Incorporated with l-Alanine Functionalized MgO Nanoplates: Physico-chemical and Food Packaging Features. Journal of Inorganic and Organometallic Polymers and Materials, 32(6), 2040-2055. https://doi.org/10.1007/ s10904-022-02261-9
- Aydogdu, A., Yildiz, E., Aydogdu, Y., Sumnu, G., Sahin, S., Ayhan, Z. (2019). Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids, 95, 245-255. https://doi.org/10.1016/j.foodhyd.2019.04.020
- Aydogdu Emir, A., Yildiz, E., Oz, E., Amarowicz, R., Proestos, C., Khan, M. R., Elobeid, T., Oz, F. (2023). Development of simultaneous antioxidant and visual pH-sensing films based on guar gum loaded with Aronia melanocarpa extract. International Journal of Food Science and Technology, 58(8), 4376-4385. https://doi.org/10.1111/ ijfs.16542
- Bigi, F., Haghighi, H., Siesler, H. W., Licciardello, F., Pulvirenti, A. (2021). Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocolloids, 120. https://doi.org/10.1016/ j.foodhyd.2021.106979
- Chandrasekar, C. M., Krishnamachari, H., Farris, S., Romano, D. (2023). Development and characterization of starch-based bioactive thermoplastic packaging films derived from banana peels. Carbohydrate Polymer Technologies and Applications, 5. https://doi.org/10.1016/ j.carpta.2023.100328
- Cui, C., Ji, N., Wang, Y., Xiong, L., Sun, Q. (2021). Bioactive and intelligent starch-based films: A review. Içinde Trends in Food Science and Technology (C. 116, ss. 854-869). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.08.024
- de Albuquerque, T. L., Silva, J. de S., de Macedo, A. C., Gonçalves, L. R. B., Rocha, M. V. P. (2019). Biotechnological Strategies for the Lignin-Based Biorefinery Valorization. Içinde Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.14570-6
- Emir, A. A., Yildiz, E., Aydogdu, Y., Sumnu, G. (2023). Active Films Based on Faba Bean (Vicia faba L.) Flour Incorporated with Sumac (Rhus coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast. Food and Bioprocess Technology, 16(2), 327-341. https://doi.org/ 10.1007/s11947-022-02940-y
- Emir, A. A., Yildiz, E., Kirtil, E. (2024). Peppermint oil-infused polylactic acid films: A novel approach for antimicrobial and biodegradable food packaging. Polymer Engineering and Science, 64(6), 2943-2955. https://doi.org/ 10.1002/pen.26737
- Espeso, J., Isaza, A., Lee, J. Y., Sörensen, P. M., Jurado, P., Avena-Bustillos, R. de J., Olaizola, M., Arboleya, J. C. (2021). Olive Leaf Waste Management. Içinde Frontiers in Sustainable Food Systems (C. 5). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2021.660582
- Ezati, P., Roy, S., Rhim, J. W. (2022). Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636. https://doi.org/10.1016/ j.colsurfa.2021.128123
- FAOSTAT, 2024, https://www.fao.org/faostat/ en/#data/QCL, Accessed on April 10, 2024.
- Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Içinde Frontiers in Nutrition (C. 5). Frontiers Media S.A. https://doi.org/ 10.3389/fnut.2018.00121
- Harnkarnsujarit, N., Wongphan, P., Chatkitanan, T., Laorenza, Y., Srisa, A. (2021). Bioplastic for Sustainable Food Packaging. Içinde Sustainable Food Processing and Engineering Challenges (ss. 203-277). Elsevier. https://doi.org/10.1016/B978-0-12-822714-5.00007-3
- Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320. https://doi.org/10.1016/j.foodchem.2020.126626
- Lee, H., Jung Sohn, Y., Jeon, S., Yang, H., Son, J., Jin Kim, Y., Jae Park, S. (2023). Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. Içinde Bioresource Technology (C. 376). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2023.128879
- Lu, X., Gu, X., Shi, Y. (2022). A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Içinde International Journal of Biological Macromolecules (C. 210, ss. 716-741). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2022.04.228
- Medeiros Silva, V. D., Coutinho Macedo, M. C., Rodrigues, C. G., Neris dos Santos, A., de Freitas e Loyola, A. C., Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38. https://doi.org/10.1016/j.fbio.2020.100750
- Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150-159. https://doi.org/10.1016/ j.carbpol.2016.05.025
- Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187–194. https://doi.org/10.1016/ j.carbpol.2017.08.079
- Mohd Zaini, H., Roslan, J., Saallah, S., Munsu, E., Sulaiman, N. S., Pindi, W. (2022). Banana peels as a bioactive ingredient and its potential application in the food industry. Journal of Functional Foods, 92(105054), 105054. https://doi.org/10.1016/ j.jff.2022.105054
- Moura-Alves, M., Souza, V. G. L., Silva, J. A., Esteves, A., Pastrana, L. M., Saraiva, C., Cerqueira, M. A. (2023). Characterization of Sodium Alginate-Based Films Blended with Olive Leaf and Laurel Leaf Extracts Obtained by Ultrasound-Assisted Technology. Foods, 12(22). https://doi.org/10.3390/foods12224076
- Nasir, N. N., Othman, S. A. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32(3), 89-101. https://doi.org/10.21315/jps2021.32.3.7
- Orsuwan, A., Shankar, S., Wang, L. F., Sothornvit, R., Rhim, J. W. (2016). Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476-485. https://doi.org/ 10.1016/j.foodhyd.2016.04.017
- Pereira, M. A. F., Cesca, K., Poletto, P., de Oliveira, D. (2021). New perspectives for banana peel polysaccharides and their conversion to oligosaccharides. Food Research International, 149. https://doi.org/10.1016/j.foodres.2021.110706
- Santiago, B., Moreira, M. T., Feijoo, G., González-García, S. (2022). Environmental comparison of banana waste valorisation strategies under a biorefinery approach. Waste Management, 142, 77-87. https://doi.org/10.1016/ j.wasman.2022.02.005
- Silva, R. D., Pacheco, T. F., de Santi, A. D., Manarelli, F., Bozzo, B. R., Brienzo, M., Otoni, C. G., Azeredo, H. M. C. (2024). From bulk banana peels to active materials: Slipping into bioplastic films with high UV-blocking and antioxidant properties. Journal of Cleaner Production, 438. https://doi.org/10.1016/j.jclepro.2024.140709
- Singha, P., Rani, R., Badwaik, L. S. (2023). Sweet lime peel-, polyvinyl alcohol- and starch-based biodegradable film: preparation and characterization. Polymer Bulletin, 80(1), 589-605. https://doi.org/10.1007/s00289-021-04040-x
- Verma, P., Rani, R., Das, D., Rai, K. K., Gogoi, P., Badwaik, L. S. (2024). Transformation of banana peel into biodegradable film added with starch and carboxymethyl cellulose and its characterization. Sustainable Chemistry and Pharmacy, 37. https://doi.org/10.1016/ j.scp.2023.101356
- Vu, H. T., Scarlett, C. J., Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Içinde Journal of Functional Foods (C. 40, ss. 238-248). Elsevier Ltd. https://doi.org/10.1016/j.jff.2017.11.006
- Yildiz, E., Bayram, I., Sumnu, G., Sahin, S., Ibis, O. I. (2021). Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocolloids, 111. https://doi.org/10.1016/j.foodhyd.2020.106238
- Yildiz, E., Emir, A. A., Sumnu, G., Kahyaoglu, L. N. (2022). Citric acid cross-linked curcumin/chitosan/chickpea flour film: An active packaging for chicken breast storage. Food Bioscience, 50. https://doi.org/10.1016/ j.fbio.2022.102121
- Yilmaz, P., Demirhan, E., Ozbek, B. (2022). Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Bioscience, 46. https://doi.org/ 10.1016/j.fbio.2021.101542
TARIM ATIKLARINDAN BİYOBOZUNUR AKTİF GIDA AMBALAJI GELİŞTİRİLMESİ: MUZ KABUĞU VE ZEYTİN YAPRAĞI EKSTRESİ İLE FİLMLERİN ÜRETİMİ, KARAKTERİZASYONU VE UYGULAMASI
Yıl 2024,
Cilt: 49 Sayı: 6, 1109 - 1125, 09.12.2024
Eda Yıldız
,
Nur Kuş
,
Selen Guner San
,
Servet Gülüm Şumnu
Öz
Bu çalışmanın amacı, tarımsal atıkları; muz kabuğu ve zeytin yaprağı ekstresi (OLE) kullanılarak biyolojik olarak parçalanabilen aktif bir gıda paketi üretilmesidir. Farklı konsantrasyonlarda (0%, 5%, 10% ve 15%) plastikleştirilmiş nişastanın olası etkisini araştırmak için filmlere mısır nişastası eklenmiştir. Filmler fiziksel özellikler (nem içeriği, şişme derecesi, su çözünürlüğü, yoğunluk, opaklık), su buharı geçirgenliği ve mekanik özellikler açısından analiz edilmiştir. Ayrıca, filmlerin fenolik içeriği ve antioksidan aktivitesi ölçülmüş ve filmlerin yaygın gıda kaynaklı patojenlere karşı antimikrobiyel aktivitesi test edilmiştir. Daha iyi özelliklere sahip filmler (B_S15_OLE), aktif filmlerin çileklerin raf ömrü üzerindeki olası etkisini araştırmak için seçilmiştir. Son olarak, 10 günün sonunda filmlerin neredeyse tamamen parçalandığı gösterilmiştir.
Etik Beyan
- Sunduğum bilgileri, dokümanları ve verileri akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Çalışmamda yararlandığım eserlerin tamamına atıfta bulunarak kaynak gösterdiğimi,
- Elde ettiğim verilerde ve sonuçlarda herhangi bir değişiklik yapmadığımı bildirir, aksi bir durumda aleyhimde doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.
Destekleyen Kurum
TÜBİTAK 2209-A
Proje Numarası
1919B01234717
Teşekkür
This study was funded by TUBITAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı (Project number:1919B01234717). Eda Yildiz and Nur Kus thank TUBITAK for the financial support.
Kaynakça
- ASTME962005 Standard test method for water vapour transmission of materials
- Amaregouda, Y., Kamanna, K., Gasti, T. (2022). Biodegradable Polyvinyl Alcohol/Carboxymethyl Cellulose Composite Incorporated with l-Alanine Functionalized MgO Nanoplates: Physico-chemical and Food Packaging Features. Journal of Inorganic and Organometallic Polymers and Materials, 32(6), 2040-2055. https://doi.org/10.1007/ s10904-022-02261-9
- Aydogdu, A., Yildiz, E., Aydogdu, Y., Sumnu, G., Sahin, S., Ayhan, Z. (2019). Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids, 95, 245-255. https://doi.org/10.1016/j.foodhyd.2019.04.020
- Aydogdu Emir, A., Yildiz, E., Oz, E., Amarowicz, R., Proestos, C., Khan, M. R., Elobeid, T., Oz, F. (2023). Development of simultaneous antioxidant and visual pH-sensing films based on guar gum loaded with Aronia melanocarpa extract. International Journal of Food Science and Technology, 58(8), 4376-4385. https://doi.org/10.1111/ ijfs.16542
- Bigi, F., Haghighi, H., Siesler, H. W., Licciardello, F., Pulvirenti, A. (2021). Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocolloids, 120. https://doi.org/10.1016/ j.foodhyd.2021.106979
- Chandrasekar, C. M., Krishnamachari, H., Farris, S., Romano, D. (2023). Development and characterization of starch-based bioactive thermoplastic packaging films derived from banana peels. Carbohydrate Polymer Technologies and Applications, 5. https://doi.org/10.1016/ j.carpta.2023.100328
- Cui, C., Ji, N., Wang, Y., Xiong, L., Sun, Q. (2021). Bioactive and intelligent starch-based films: A review. Içinde Trends in Food Science and Technology (C. 116, ss. 854-869). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.08.024
- de Albuquerque, T. L., Silva, J. de S., de Macedo, A. C., Gonçalves, L. R. B., Rocha, M. V. P. (2019). Biotechnological Strategies for the Lignin-Based Biorefinery Valorization. Içinde Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-409547-2.14570-6
- Emir, A. A., Yildiz, E., Aydogdu, Y., Sumnu, G. (2023). Active Films Based on Faba Bean (Vicia faba L.) Flour Incorporated with Sumac (Rhus coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast. Food and Bioprocess Technology, 16(2), 327-341. https://doi.org/ 10.1007/s11947-022-02940-y
- Emir, A. A., Yildiz, E., Kirtil, E. (2024). Peppermint oil-infused polylactic acid films: A novel approach for antimicrobial and biodegradable food packaging. Polymer Engineering and Science, 64(6), 2943-2955. https://doi.org/ 10.1002/pen.26737
- Espeso, J., Isaza, A., Lee, J. Y., Sörensen, P. M., Jurado, P., Avena-Bustillos, R. de J., Olaizola, M., Arboleya, J. C. (2021). Olive Leaf Waste Management. Içinde Frontiers in Sustainable Food Systems (C. 5). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2021.660582
- Ezati, P., Roy, S., Rhim, J. W. (2022). Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636. https://doi.org/10.1016/ j.colsurfa.2021.128123
- FAOSTAT, 2024, https://www.fao.org/faostat/ en/#data/QCL, Accessed on April 10, 2024.
- Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Içinde Frontiers in Nutrition (C. 5). Frontiers Media S.A. https://doi.org/ 10.3389/fnut.2018.00121
- Harnkarnsujarit, N., Wongphan, P., Chatkitanan, T., Laorenza, Y., Srisa, A. (2021). Bioplastic for Sustainable Food Packaging. Içinde Sustainable Food Processing and Engineering Challenges (ss. 203-277). Elsevier. https://doi.org/10.1016/B978-0-12-822714-5.00007-3
- Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320. https://doi.org/10.1016/j.foodchem.2020.126626
- Lee, H., Jung Sohn, Y., Jeon, S., Yang, H., Son, J., Jin Kim, Y., Jae Park, S. (2023). Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. Içinde Bioresource Technology (C. 376). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2023.128879
- Lu, X., Gu, X., Shi, Y. (2022). A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Içinde International Journal of Biological Macromolecules (C. 210, ss. 716-741). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2022.04.228
- Medeiros Silva, V. D., Coutinho Macedo, M. C., Rodrigues, C. G., Neris dos Santos, A., de Freitas e Loyola, A. C., Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38. https://doi.org/10.1016/j.fbio.2020.100750
- Medina Jaramillo, C., Gutiérrez, T. J., Goyanes, S., Bernal, C., Famá, L. (2016). Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, 151, 150-159. https://doi.org/10.1016/ j.carbpol.2016.05.025
- Medina-Jaramillo, C., Ochoa-Yepes, O., Bernal, C., Famá, L. (2017). Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers, 176, 187–194. https://doi.org/10.1016/ j.carbpol.2017.08.079
- Mohd Zaini, H., Roslan, J., Saallah, S., Munsu, E., Sulaiman, N. S., Pindi, W. (2022). Banana peels as a bioactive ingredient and its potential application in the food industry. Journal of Functional Foods, 92(105054), 105054. https://doi.org/10.1016/ j.jff.2022.105054
- Moura-Alves, M., Souza, V. G. L., Silva, J. A., Esteves, A., Pastrana, L. M., Saraiva, C., Cerqueira, M. A. (2023). Characterization of Sodium Alginate-Based Films Blended with Olive Leaf and Laurel Leaf Extracts Obtained by Ultrasound-Assisted Technology. Foods, 12(22). https://doi.org/10.3390/foods12224076
- Nasir, N. N., Othman, S. A. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32(3), 89-101. https://doi.org/10.21315/jps2021.32.3.7
- Orsuwan, A., Shankar, S., Wang, L. F., Sothornvit, R., Rhim, J. W. (2016). Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloids, 60, 476-485. https://doi.org/ 10.1016/j.foodhyd.2016.04.017
- Pereira, M. A. F., Cesca, K., Poletto, P., de Oliveira, D. (2021). New perspectives for banana peel polysaccharides and their conversion to oligosaccharides. Food Research International, 149. https://doi.org/10.1016/j.foodres.2021.110706
- Santiago, B., Moreira, M. T., Feijoo, G., González-García, S. (2022). Environmental comparison of banana waste valorisation strategies under a biorefinery approach. Waste Management, 142, 77-87. https://doi.org/10.1016/ j.wasman.2022.02.005
- Silva, R. D., Pacheco, T. F., de Santi, A. D., Manarelli, F., Bozzo, B. R., Brienzo, M., Otoni, C. G., Azeredo, H. M. C. (2024). From bulk banana peels to active materials: Slipping into bioplastic films with high UV-blocking and antioxidant properties. Journal of Cleaner Production, 438. https://doi.org/10.1016/j.jclepro.2024.140709
- Singha, P., Rani, R., Badwaik, L. S. (2023). Sweet lime peel-, polyvinyl alcohol- and starch-based biodegradable film: preparation and characterization. Polymer Bulletin, 80(1), 589-605. https://doi.org/10.1007/s00289-021-04040-x
- Verma, P., Rani, R., Das, D., Rai, K. K., Gogoi, P., Badwaik, L. S. (2024). Transformation of banana peel into biodegradable film added with starch and carboxymethyl cellulose and its characterization. Sustainable Chemistry and Pharmacy, 37. https://doi.org/10.1016/ j.scp.2023.101356
- Vu, H. T., Scarlett, C. J., Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Içinde Journal of Functional Foods (C. 40, ss. 238-248). Elsevier Ltd. https://doi.org/10.1016/j.jff.2017.11.006
- Yildiz, E., Bayram, I., Sumnu, G., Sahin, S., Ibis, O. I. (2021). Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocolloids, 111. https://doi.org/10.1016/j.foodhyd.2020.106238
- Yildiz, E., Emir, A. A., Sumnu, G., Kahyaoglu, L. N. (2022). Citric acid cross-linked curcumin/chitosan/chickpea flour film: An active packaging for chicken breast storage. Food Bioscience, 50. https://doi.org/10.1016/ j.fbio.2022.102121
- Yilmaz, P., Demirhan, E., Ozbek, B. (2022). Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Bioscience, 46. https://doi.org/ 10.1016/j.fbio.2021.101542