Araştırma Makalesi
BibTex RIS Kaynak Göster

Siyah havuç posasının radyo frekans kurutma sistemiyle kurutulması ve kalite özellikleri üzerine etkisi

Yıl 2023, Sayı: 29, 12 - 20, 23.01.2023
https://doi.org/10.56833/bursagida.1150321

Öz

Amaç: Bu çalışmada, radyo frekans kurutma teknolojisi kullanılarak siyah havuç posası kurutulmuştur ve radyo frekans kurutma sisteminin etkinliği ve kurutulmuş siyah havuç posasının kalite özellikleri incelenmiştir.


Materyal ve yöntem: Siyah havuç posasının radyo frekans kurutma sisteminde kurutulması için 80 mm elektrot yüksekliği, 20 mm ürün kalınlığı ve 500 g ürün ağırlığı koşulları kullanılmıştır. Siyah havuç posasını kurutmak için kullanılan radyo frekans kurutma tekniğinin kuruma özelliklerini tanımlamak için altı farklı matematiksel model uygulanmıştır. Ayrıca, kurumanın etkin nem difüzyon katsayı değerini tahmin edebilmek için difüzyon denklemi (Fick'in ikinci yasası) ve eğim yöntemi (the slope method) kullanılmıştır. Son olarak, radyo frekans kurutma sistemiyle kurutulan siyah havuç posasının ürün kalitesi; renk, toplam fenolik içerik, toplam antosiyanin içerik ve antioksidan kapasite açısından değerlendirilmiştir.


Bulgular ve sonuç: Hedef nem içeriğine (0,04 g su/g kuru madde) ulaşmak için gereken toplam kuruma süresi 210 dk olarak tespit edilmiştir. Radyo frekans kurutmanın kuruma özelliğini tanımlayan en iyi model Midilli modeli olarak belirlenmiştir. Difüzyon denklemi yöntemiyle 0,42×10-6 m2/dk ve 1,31×10-6 m2/dk olmak üzere iki etkin nem difüzyon katsayısı (Deff-fick) elde edilirken, eğim yöntemiyle elde edilen etkin nem difüzyon katsayısı (Deff-sm) değerlerinin 0,41-1,59×10-6 m2/dk aralığında değiştiği tespit edilmiştir.

Kaynakça

  • Agcam, E., Akyıldız, A. and Balasubramaniam, V. (2017). Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chemistry, 237, 461-470.
  • Akaranuchat, P., Vearasilp, S., Thanapornpoonpong, S., Krittigamas, N., Suriyong, S., Pawelzik, E. and Horsten, D. V. (2012). Combining radio frequency drying with hot air oven for energy reduction in GABA rice. In Conference on International Research on Food Security, Natural Resource Management and Rural Development.
  • Awuah, G.B., Ramaswamy, H.S. and Tang, J. (2014). Radio-Frequency heating in food processing: Principles and applications. CRC Press.
  • Benzie, I.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70-76.
  • Chen, Y. H., Yen, Y. F. and Chen, S. D. (2021). Effects of Radio Frequency Heating on the Stability and Antioxidant Properties of Rice Bran. Foods, 10(4), 810.
  • Crank, J. (1979). The mathematics of diffusion. Oxford university press.
  • Elik, A. (2021). Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. Innovative Food Science & Emerging Technologies, 73, 102800. Gong, C., Liao, M., Zhang, H., Xu, Y., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13(3), 419-429.
  • Goula, A.M., Thymiatis, K. and Kaderides, K. (2016). Valorization of grape pomace: drying behavior and ultrasound extraction of phenolics. Food and Bioproducts Processing, 100, 132-144. Hou, L., Zhou, X. and Wang, S. (2020). Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. International Journal of Heat and Mass Transfer, 154, 119704
  • Jiang, H., Shen, Y., Zhen, L., Li, W. and Zhang, Q. (2019). Evaluation of strawberries dried by radio frequency energy. Drying Technology, 37(3), 312-321.
  • Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S. and Sairam, K. (2019). Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology, 56, 995-1007.
  • Lee, J., Durst, R.W. and Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278.
  • Mahmood, N., Liu, Y., Munir, Z., Zhang, Y. and Niazi, B. M. K. (2022). Effects of hot air assisted radio frequency drying on heating uniformity, drying characteristics and quality of paddy. LWT, 113131.
  • Özbek, H.N. (2021). Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT, 152, 112332.
  • Ran, X. L., Zhang, M., Wang, Y. and Liu, Y. (2019). Vacuum radio frequency drying: a novel method to improve the main qualities of chicken powders. Journal of Food Science and Technology, 56(10), 4482-4491.
  • Roknul, A.S., Zhang, M., Mujumdar, A.S. and Wang, Y. (2014). A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Drying Technology, 32, 657-666.
  • Shinde, A., Das, S. and Datta, A. K. (2013). Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air–radio frequency (RF) dryer. Journal of Food Engineering, 116(2), 444-449.
  • Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • Sucheta, Misra, N. N. and Yadav, S. K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592.
  • Türkyılmaz, M., Yemiş, O. and Özkan, M. (2012). Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chemistry, 134, 1052-1058.
  • Wang, W., Wang, W., Jung, J., Yang, R., Tang, J. and Zhao, Y. (2020a). Investigation of hot-air assisted radio frequency (HARF) dielectric heating for improving drying efficiency and ensuring quality of dried hazelnuts (Corylus avellana L.). Food and Bioproducts Processing, 120, 179-190.
  • Wang, W., Wang, W., Wang, Y., Yang, R., Tang, J. and Zhao, Y. (2020b). Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering, 279, 109956.
  • Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R. and Wang, S. (2014a). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7(1), 278-288.
  • Wang, Y., Zhang, L., Gao, M., Tang, J. and Wang, S. (2014b). Pilot-scale radio frequency drying of macadamia nuts: heating and drying uniformity. Drying Technology, 32(9), 1052-1059.
  • Wang, W., Tang, J. and Zhao, Y. (2021). Investigation of hot-air assisted continuous radio frequency drying for improving drying efficiency and reducing shell cracks of inshell hazelnuts: The relationship between cracking level and nut quality. Food and Bioproducts Processing, 125, 46-56.
  • Yazar, G. and İçier, F. (2013). Radyo Frekans Isıtma Yöntemi ve Gıda İşlemede Kullanımı. Akademik Gıda, 11, 80-93.
  • Zhang, B., Zheng, A., Zhou, L., Huang, Z. and Wang, S. (2016). Developing hot air-assisted radio frequency drying for in-shell walnuts. Emirates Journal of Food and Agriculture, 459-467.
  • Zhou, X., Xu, R., Zhang, B., Pei, S., Liu, Q., Ramaswamy, H. S. and Wang, S. (2018). Radio frequency-vacuum drying of kiwifruits: Kinetics, uniformity, and product quality. Food and Bioprocess Technology, 11(11), 2094-2109.
  • Zhou, X., Ramaswamy, H., Qu, Y., Xu, R. and Wang, S. (2019). Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies, 56, 102182.

Drying of black carrot pomace by radio frequency drying system and its effect on quality properties

Yıl 2023, Sayı: 29, 12 - 20, 23.01.2023
https://doi.org/10.56833/bursagida.1150321

Öz

Objective: In this study, black carrot pomace was dried by using the radio frequency drying technology and the drying efficiency of radio frequency drying and the quality of black carrot pomace were investigated.


Materials and methods: Electrode gap of 80 mm, sample thickness of 20 mm and sample weight of 500 g were conditions used for drying of black carrot pomace. Six different mathematical models were applied to define the drying characteristics of black carrot pomace. Moreover, the slope and the diffusion equation (Fick’s second law) methods were used for estimating the effective moisture diffusivity of radio frequency. Finally, the product quality of black carrot pomace dried by radio frequency drying were evaluated in terms of color, total phenolic content, anthocyanin content and antioxidant capacity.


Results and conclusion: The total drying time required to achieve target moisture content (0.04 g water/g dry solid) were determined to be 210 min. Midilli model was found to be the best model to describe the drying characteristic of radio frequency drying. Two effective moisture diffusion coefficients (Deff-fick) of 0.42 and 1.31×10-6 m2/min were obtained by the diffusion equation method while the Deff-sm values obtained by the slope method varied in range of 0.41-1.59×10-6 m2/min.

Kaynakça

  • Agcam, E., Akyıldız, A. and Balasubramaniam, V. (2017). Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chemistry, 237, 461-470.
  • Akaranuchat, P., Vearasilp, S., Thanapornpoonpong, S., Krittigamas, N., Suriyong, S., Pawelzik, E. and Horsten, D. V. (2012). Combining radio frequency drying with hot air oven for energy reduction in GABA rice. In Conference on International Research on Food Security, Natural Resource Management and Rural Development.
  • Awuah, G.B., Ramaswamy, H.S. and Tang, J. (2014). Radio-Frequency heating in food processing: Principles and applications. CRC Press.
  • Benzie, I.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70-76.
  • Chen, Y. H., Yen, Y. F. and Chen, S. D. (2021). Effects of Radio Frequency Heating on the Stability and Antioxidant Properties of Rice Bran. Foods, 10(4), 810.
  • Crank, J. (1979). The mathematics of diffusion. Oxford university press.
  • Elik, A. (2021). Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. Innovative Food Science & Emerging Technologies, 73, 102800. Gong, C., Liao, M., Zhang, H., Xu, Y., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13(3), 419-429.
  • Goula, A.M., Thymiatis, K. and Kaderides, K. (2016). Valorization of grape pomace: drying behavior and ultrasound extraction of phenolics. Food and Bioproducts Processing, 100, 132-144. Hou, L., Zhou, X. and Wang, S. (2020). Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. International Journal of Heat and Mass Transfer, 154, 119704
  • Jiang, H., Shen, Y., Zhen, L., Li, W. and Zhang, Q. (2019). Evaluation of strawberries dried by radio frequency energy. Drying Technology, 37(3), 312-321.
  • Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S. and Sairam, K. (2019). Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology, 56, 995-1007.
  • Lee, J., Durst, R.W. and Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278.
  • Mahmood, N., Liu, Y., Munir, Z., Zhang, Y. and Niazi, B. M. K. (2022). Effects of hot air assisted radio frequency drying on heating uniformity, drying characteristics and quality of paddy. LWT, 113131.
  • Özbek, H.N. (2021). Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT, 152, 112332.
  • Ran, X. L., Zhang, M., Wang, Y. and Liu, Y. (2019). Vacuum radio frequency drying: a novel method to improve the main qualities of chicken powders. Journal of Food Science and Technology, 56(10), 4482-4491.
  • Roknul, A.S., Zhang, M., Mujumdar, A.S. and Wang, Y. (2014). A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (Lactuca sativa L.). Drying Technology, 32, 657-666.
  • Shinde, A., Das, S. and Datta, A. K. (2013). Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air–radio frequency (RF) dryer. Journal of Food Engineering, 116(2), 444-449.
  • Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • Sucheta, Misra, N. N. and Yadav, S. K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592.
  • Türkyılmaz, M., Yemiş, O. and Özkan, M. (2012). Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chemistry, 134, 1052-1058.
  • Wang, W., Wang, W., Jung, J., Yang, R., Tang, J. and Zhao, Y. (2020a). Investigation of hot-air assisted radio frequency (HARF) dielectric heating for improving drying efficiency and ensuring quality of dried hazelnuts (Corylus avellana L.). Food and Bioproducts Processing, 120, 179-190.
  • Wang, W., Wang, W., Wang, Y., Yang, R., Tang, J. and Zhao, Y. (2020b). Hot-air assisted continuous radio frequency heating for improving drying efficiency and retaining quality of inshell hazelnuts (Corylus avellana L. cv. Barcelona). Journal of Food Engineering, 279, 109956.
  • Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R. and Wang, S. (2014a). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7(1), 278-288.
  • Wang, Y., Zhang, L., Gao, M., Tang, J. and Wang, S. (2014b). Pilot-scale radio frequency drying of macadamia nuts: heating and drying uniformity. Drying Technology, 32(9), 1052-1059.
  • Wang, W., Tang, J. and Zhao, Y. (2021). Investigation of hot-air assisted continuous radio frequency drying for improving drying efficiency and reducing shell cracks of inshell hazelnuts: The relationship between cracking level and nut quality. Food and Bioproducts Processing, 125, 46-56.
  • Yazar, G. and İçier, F. (2013). Radyo Frekans Isıtma Yöntemi ve Gıda İşlemede Kullanımı. Akademik Gıda, 11, 80-93.
  • Zhang, B., Zheng, A., Zhou, L., Huang, Z. and Wang, S. (2016). Developing hot air-assisted radio frequency drying for in-shell walnuts. Emirates Journal of Food and Agriculture, 459-467.
  • Zhou, X., Xu, R., Zhang, B., Pei, S., Liu, Q., Ramaswamy, H. S. and Wang, S. (2018). Radio frequency-vacuum drying of kiwifruits: Kinetics, uniformity, and product quality. Food and Bioprocess Technology, 11(11), 2094-2109.
  • Zhou, X., Ramaswamy, H., Qu, Y., Xu, R. and Wang, S. (2019). Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science & Emerging Technologies, 56, 102182.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Özgün Araştırmalar
Yazarlar

Aysel Elik Bu kişi benim 0000-0003-4949-9108

Yayımlanma Tarihi 23 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 29

Kaynak Göster

APA Elik, A. (2023). Siyah havuç posasının radyo frekans kurutma sistemiyle kurutulması ve kalite özellikleri üzerine etkisi. Gıda Ve Yem Bilimi Teknolojisi Dergisi(29), 12-20. https://doi.org/10.56833/bursagida.1150321

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0