Araştırma Makalesi
BibTex RIS Kaynak Göster

A multi-agent framework for verifiable AIGC licensing in digital ecosystems

Yıl 2025, Cilt: 11 Sayı: 3, 327 - 346, 27.10.2025
https://doi.org/10.30855/gjeb.2025.11.3.009

Öz

The emergence of AI-generated content (AIGC) presents intricate difficulties concerning authorship, ownership, and validation of digital assets. These difficulties reveal a significant deficiency in existing governance frameworks, especially regarding the licensing and traceability of synthetic media. This study introduces a modular, multi-agent framework (MAG-AIGC) that utilizes Retrieval-Augmented Generation (RAG) and blockchain technologies to automate content registration, license interpretation, and provenance verification. The suggested architecture was formulated using the Design Science Research (DSR) approach and assessed over 30 relevant AIGC-licensing scenarios. Experimental findings indicate that the system attains up to 90% accuracy in licensing compliance detection, concurrently ensuring minimal latency and transaction costs. In addition to its technological contributions, the framework enhances trust, transparency, and accountability within the emerging AIGC ecosystem, providing actionable insights for regulators, creators, and platform developers to implement verifiable digital governance mechanisms and ensure reliability in AIGC-based commerce.

Kaynakça

  • Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P., and Sun, L. (2025). A survey of AI-generated content (AIGC). ACM Computing Surveys, 57, 125. Doi: https://doi.org/10.1145/3704262
  • Chaffer, T. J. (2025). Governing the agent-to-agent economy of trust via progressive decentralization. arXiv, arXiv:2501.16606.
  • Chohan, U. W. (2021). Non-fungible tokens: Blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers, 14. Doi: https://doi.org/10.2139/ssrn.3822743
  • Creative Commons. (2023). Understanding CC Licenses and Generative AI. Retrieved from https://creativecommons.org/2023/08/18/understanding-cc-licenses-and-generative-ai/
  • Cyberspace Administration of China. (2023). Interim Measures for the Management of Generative Artificial Intelligence Services. Beijing: CAC Press.
  • Daniel, E., and Tschorsch, F. (2022). IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Communications Surveys & Tutorials, 24, 31–52. Doi: https://doi.org/10.1109/COMST.2022.3143147
  • Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). QLORA: Efficient finetuning of quantized LLMs. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS) (pp. 10088–10115).
  • European Commission. (2024). Artificial Intelligence Act – Regulation (EU) 2024/1689. Official Journal of the European Union.
  • Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., and Chua, T.-S. (2024). A survey on RAG meeting LLMs: Towards retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6491–6501).
  • Foo, L. G., Rahmani, H., and Liu, J. (2025). AI-Generated Content (AIGC) for Various Data Modalities: A Survey. ACM Computing Surveys, 57(9). Doi: https://doi.org/10.1145/3728633
  • Hammi, B., Zeadally, S., and Perez, A. J. (2023). Non-fungible tokens: A review. IEEE Internet of Things Magazine, 6, 46–50. Doi: https://doi.org/10.1109/IOTM.001.2200244
  • Hanneke, B., Heß, M., and Hinz, O. (2025). Foundations of decentralized metaverse economies: Converging physical and virtual realities. Journal of Management Information Systems, 42, 238–272. Doi: https://doi.org/10.1080/07421222.2025.2452017
  • Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28, 75–105.
  • Huynh-The, T., Gadekallu, T. R., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.-V., ... Liyanage, M. (2023). Blockchain for the metaverse: A review. Future Generation Computer Systems, 143, 401–419. Doi: https://doi.org/10.1016/j.future.2023.02.008
  • Kaal, W. A. (2025). AI governance via Web3 reputation system. Stanford Journal of Blockchain Law & Policy.
  • Karandikar, N., Chakravorty, A., and Rong, C. (2021). Blockchain Based Transaction System With Fungible and Non-Fungible Tokens for a Community-Based Energy Infrastructure. Sensors, 21, 3822. Doi: https://doi.org/10.3390/s21113822
  • Karim, M. M., Van, D. H., Khan, S., Qu, Q., and Kholodov, Y. (2025). AI agents meet blockchain: A survey on secure and scalable collaboration for multi-agents. Future Internet, 17, 57. Doi: https://doi.org/10.3390/fi17020057
  • Khan, S. N., Loukil, F., Ghedira-Guegan, C., et al. (2021). Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-Peer Networking and Applications, 14, 2901–2925.
  • Ko, H., Oh, J., and Kim, S. U. (2023). Digital content management using non-fungible tokens and the interplanetary file system. Applied Sciences, 14, 315. Doi: https://doi.org/10.3390/app14010315
  • Lin, Y., Du, H., Niyato, D., Nie, J., Zhang, J., Cheng, Y., and Yang, Z. (2023). Blockchain-Aided Secure Semantic Communication for AI-Generated Content in Metaverse. IEEE Open Journal of the Computer Society, 4, 72–83. Doi: https://doi.org/10.1109/OJCS.2023.3260732
  • Liu, Y., Du, H., Niyato, D., Kang, J., Xiong, Z., Miao, C., ... Jamalipour, A. (2024). Blockchain-Empowered Lifecycle Management for AI-Generated Content Products in Edge Networks. IEEE Wireless Communications, 31, 286–294. Doi: https://doi.org/10.1109/MWC.003.2300053
  • Luo, H., Luo, J., and Vasilakos, A. V. (2024). BC4LLM: A perspective of trusted artificial intelligence when blockchain meets large language models. Neurocomputing, 599, 128089. Doi: https://doi.org/10.1016/j.neucom.2024.128089
  • Mezzi, E., Mertzani, A., Manis, M. P., Lilova, S., Vadivoulis, N., Gatirdakis, S., ... Hmede, R. (2025). Who owns the output? Bridging law and technology in LLMs attribution. arXiv, arXiv:2504.01032.
  • Miao, J., Thongprayoon, C., Suppadungsuk, S., Garcia Valencia, O. A., & Cheungpasitporn, W. (2024). Integrating Retrieval-Augmented Generation with Large Language Models in Nephrology: Advancing Practical Applications. Medicina, 60(3), 445. Doi: https://doi.org/10.3390/medicina60030445
  • Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal.
  • Ouyang, L., Yuan, Y., and Wang, F.-Y. (2022). Learning markets: An AI collaboration framework based on blockchain and smart contracts. IEEE Internet of Things Journal, 9, 14273–14286. Doi: https://doi.org/10.1109/JIOT.2020.3032706
  • Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24, 45–77. Doi: https://doi.org/10.2753/MIS0742-1222240302
  • Qwen Team. (2024). Qwen2 Technical Report. arXiv, arXiv:2407.10671.
  • Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. Doi: https://doi.org/10.1016/j.iotcps.2023.04.003
  • Salah, K., Rehman, M. H. U., Nizamuddin, N., and Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. Doi: https://doi.org/10.1109/ACCESS.2018.2890507
  • Singh, A., Ehtesham, A., Kumar, S., and Talaei Khoei, T. (2025). Agentic retrieval-augmented generation: A survey on Agentic RAG. arXiv, arXiv:2501.09136.
  • Tanriverdi, M. (2024). PublicEduChain: A Framework for Sharing Student-Owned Educational Data on Public Blockchain Network. IEEE Access, 12, 51772–51785. Doi: https://doi.org/10.1109/ACCESS.2024.3385660
  • Truong, V. T., Le, H. D., and Le, L. B. (2024). Trust-Free Blockchain Framework for AI-Generated Content Trading and Management in Metaverse. IEEE Access, 12, 41815–41828. Doi: https://doi.org/10.1109/ACCESS.2024.3376509
  • U.S. Department of Commerce, National Telecommunications and Information Administration (NTIA). (2024). AI Accountability Policy Report: Executive Overview. Washington, D.C.: U.S. Department of Commerce. Retrieved from https://www.ntia.gov/issues/artificial-intelligence/ai-accountability-policy-report/overview.
  • Wang, S., Ding, W., Li, J., Yuan, Y., Ouyang, L., and Wang, F.-Y. (2019). Decentralized autonomous organizations: Concept, model, and applications. IEEE Transactions on Computational Social Systems, 6, 870–878. Doi: https://doi.org/10.1109/TCSS.2019.2938190
  • Wang, Y., Pan, Y., Yan, M., Su, Z., and Luan, T. H. (2023). A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions. IEEE Open Journal of the Computer Society, 4, 280–302.
  • Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., and Shen, X. (2023). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25, 319–352.
  • Xu, J., Zhang, J., and Wang, J. (2025). Digital image copyright protection and management approach—Based on artificial intelligence and blockchain technology. Journal of Theoretical and Applied Electronic Commerce Research, 20, 76. Doi: https://doi.org/10.3390/jtaer20020076
  • Yang, F., Abedin, M. Z., Qiao, Y., and Ye, L. (2024). Toward Trustworthy Governance of AI-Generated Content (AIGC): A Blockchain-Driven Regulatory Framework for Secure Digital Ecosystems. IEEE Transactions on Engineering Management, 71, 14945–14962.
  • Zhang, Q., et al. (2025). Exploring Edge-Driven Collaborative Fine-Tuning toward Customized AIGC Services. IEEE Network, 39, 293–301.
  • Zhang, Q., Wu, Gr., Yang, R., et al. (2024). Digital image copyright protection method based on blockchain and zero trust mechanism. Multimedia Tools and Applications, 83, 77267–77302.

Dijital ekosistemlerde doğrulanabilir AIGC lisanslaması için çoklu ajan çerçevesi

Yıl 2025, Cilt: 11 Sayı: 3, 327 - 346, 27.10.2025
https://doi.org/10.30855/gjeb.2025.11.3.009

Öz

Yapay zekâ tarafından üretilen içeriklerin (AIGC) ortaya çıkışı, dijital varlıkların yazarlığı, mülkiyeti ve doğrulanması açısından karmaşık sorunlar doğurmuştur. Bu sorunlar, özellikle sentetik medyanın lisanslanması ve izlenebilirliği konusunda mevcut yönetişim çerçevelerinde önemli bir yetersizliği açığa çıkarmaktadır. Bu çalışma, içerik kaydını, lisans yorumlamasını ve köken doğrulamasını otomatikleştirmek için bilgiye dayalı üretim (Retrieval-Augmented Generation, RAG) ve blok zinciri teknolojilerini kullanan modüler, çoklu aracılı bir çerçeve (MAG-AIGC) önermektedir. Önerilen mimari, Tasarım Bilimi Araştırması (Design Science Research, DSR) yaklaşımıyla geliştirilmiş ve 30’dan fazla AIGC lisanslama senaryosu üzerinde değerlendirilmiştir. Deneysel bulgular, sistemin lisans uyumluluğu tespitinde %90’a varan doğruluk oranına ulaştığını ve aynı anda düşük gecikme süresi ile işlem maliyeti sağladığını göstermektedir. Teknolojik katkılarının ötesinde, bu çerçeve gelişmekte olan AIGC ekosisteminde güveni, şeffaflığı ve hesap verebilirliği artırmakta, düzenleyiciler, içerik üreticileri ve platform geliştiricileri için doğrulanabilir dijital yönetişim mekanizmalarının uygulanması ve AIGC tabanlı ticarette güvenilirliğin sağlanması adına uygulanabilir içgörüler sunmaktadır.

Kaynakça

  • Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P., and Sun, L. (2025). A survey of AI-generated content (AIGC). ACM Computing Surveys, 57, 125. Doi: https://doi.org/10.1145/3704262
  • Chaffer, T. J. (2025). Governing the agent-to-agent economy of trust via progressive decentralization. arXiv, arXiv:2501.16606.
  • Chohan, U. W. (2021). Non-fungible tokens: Blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers, 14. Doi: https://doi.org/10.2139/ssrn.3822743
  • Creative Commons. (2023). Understanding CC Licenses and Generative AI. Retrieved from https://creativecommons.org/2023/08/18/understanding-cc-licenses-and-generative-ai/
  • Cyberspace Administration of China. (2023). Interim Measures for the Management of Generative Artificial Intelligence Services. Beijing: CAC Press.
  • Daniel, E., and Tschorsch, F. (2022). IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Communications Surveys & Tutorials, 24, 31–52. Doi: https://doi.org/10.1109/COMST.2022.3143147
  • Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). QLORA: Efficient finetuning of quantized LLMs. In Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS) (pp. 10088–10115).
  • European Commission. (2024). Artificial Intelligence Act – Regulation (EU) 2024/1689. Official Journal of the European Union.
  • Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., and Chua, T.-S. (2024). A survey on RAG meeting LLMs: Towards retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6491–6501).
  • Foo, L. G., Rahmani, H., and Liu, J. (2025). AI-Generated Content (AIGC) for Various Data Modalities: A Survey. ACM Computing Surveys, 57(9). Doi: https://doi.org/10.1145/3728633
  • Hammi, B., Zeadally, S., and Perez, A. J. (2023). Non-fungible tokens: A review. IEEE Internet of Things Magazine, 6, 46–50. Doi: https://doi.org/10.1109/IOTM.001.2200244
  • Hanneke, B., Heß, M., and Hinz, O. (2025). Foundations of decentralized metaverse economies: Converging physical and virtual realities. Journal of Management Information Systems, 42, 238–272. Doi: https://doi.org/10.1080/07421222.2025.2452017
  • Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28, 75–105.
  • Huynh-The, T., Gadekallu, T. R., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.-V., ... Liyanage, M. (2023). Blockchain for the metaverse: A review. Future Generation Computer Systems, 143, 401–419. Doi: https://doi.org/10.1016/j.future.2023.02.008
  • Kaal, W. A. (2025). AI governance via Web3 reputation system. Stanford Journal of Blockchain Law & Policy.
  • Karandikar, N., Chakravorty, A., and Rong, C. (2021). Blockchain Based Transaction System With Fungible and Non-Fungible Tokens for a Community-Based Energy Infrastructure. Sensors, 21, 3822. Doi: https://doi.org/10.3390/s21113822
  • Karim, M. M., Van, D. H., Khan, S., Qu, Q., and Kholodov, Y. (2025). AI agents meet blockchain: A survey on secure and scalable collaboration for multi-agents. Future Internet, 17, 57. Doi: https://doi.org/10.3390/fi17020057
  • Khan, S. N., Loukil, F., Ghedira-Guegan, C., et al. (2021). Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-Peer Networking and Applications, 14, 2901–2925.
  • Ko, H., Oh, J., and Kim, S. U. (2023). Digital content management using non-fungible tokens and the interplanetary file system. Applied Sciences, 14, 315. Doi: https://doi.org/10.3390/app14010315
  • Lin, Y., Du, H., Niyato, D., Nie, J., Zhang, J., Cheng, Y., and Yang, Z. (2023). Blockchain-Aided Secure Semantic Communication for AI-Generated Content in Metaverse. IEEE Open Journal of the Computer Society, 4, 72–83. Doi: https://doi.org/10.1109/OJCS.2023.3260732
  • Liu, Y., Du, H., Niyato, D., Kang, J., Xiong, Z., Miao, C., ... Jamalipour, A. (2024). Blockchain-Empowered Lifecycle Management for AI-Generated Content Products in Edge Networks. IEEE Wireless Communications, 31, 286–294. Doi: https://doi.org/10.1109/MWC.003.2300053
  • Luo, H., Luo, J., and Vasilakos, A. V. (2024). BC4LLM: A perspective of trusted artificial intelligence when blockchain meets large language models. Neurocomputing, 599, 128089. Doi: https://doi.org/10.1016/j.neucom.2024.128089
  • Mezzi, E., Mertzani, A., Manis, M. P., Lilova, S., Vadivoulis, N., Gatirdakis, S., ... Hmede, R. (2025). Who owns the output? Bridging law and technology in LLMs attribution. arXiv, arXiv:2504.01032.
  • Miao, J., Thongprayoon, C., Suppadungsuk, S., Garcia Valencia, O. A., & Cheungpasitporn, W. (2024). Integrating Retrieval-Augmented Generation with Large Language Models in Nephrology: Advancing Practical Applications. Medicina, 60(3), 445. Doi: https://doi.org/10.3390/medicina60030445
  • Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal.
  • Ouyang, L., Yuan, Y., and Wang, F.-Y. (2022). Learning markets: An AI collaboration framework based on blockchain and smart contracts. IEEE Internet of Things Journal, 9, 14273–14286. Doi: https://doi.org/10.1109/JIOT.2020.3032706
  • Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24, 45–77. Doi: https://doi.org/10.2753/MIS0742-1222240302
  • Qwen Team. (2024). Qwen2 Technical Report. arXiv, arXiv:2407.10671.
  • Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. Doi: https://doi.org/10.1016/j.iotcps.2023.04.003
  • Salah, K., Rehman, M. H. U., Nizamuddin, N., and Al-Fuqaha, A. (2019). Blockchain for AI: Review and open research challenges. IEEE Access, 7, 10127–10149. Doi: https://doi.org/10.1109/ACCESS.2018.2890507
  • Singh, A., Ehtesham, A., Kumar, S., and Talaei Khoei, T. (2025). Agentic retrieval-augmented generation: A survey on Agentic RAG. arXiv, arXiv:2501.09136.
  • Tanriverdi, M. (2024). PublicEduChain: A Framework for Sharing Student-Owned Educational Data on Public Blockchain Network. IEEE Access, 12, 51772–51785. Doi: https://doi.org/10.1109/ACCESS.2024.3385660
  • Truong, V. T., Le, H. D., and Le, L. B. (2024). Trust-Free Blockchain Framework for AI-Generated Content Trading and Management in Metaverse. IEEE Access, 12, 41815–41828. Doi: https://doi.org/10.1109/ACCESS.2024.3376509
  • U.S. Department of Commerce, National Telecommunications and Information Administration (NTIA). (2024). AI Accountability Policy Report: Executive Overview. Washington, D.C.: U.S. Department of Commerce. Retrieved from https://www.ntia.gov/issues/artificial-intelligence/ai-accountability-policy-report/overview.
  • Wang, S., Ding, W., Li, J., Yuan, Y., Ouyang, L., and Wang, F.-Y. (2019). Decentralized autonomous organizations: Concept, model, and applications. IEEE Transactions on Computational Social Systems, 6, 870–878. Doi: https://doi.org/10.1109/TCSS.2019.2938190
  • Wang, Y., Pan, Y., Yan, M., Su, Z., and Luan, T. H. (2023). A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions. IEEE Open Journal of the Computer Society, 4, 280–302.
  • Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., and Shen, X. (2023). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials, 25, 319–352.
  • Xu, J., Zhang, J., and Wang, J. (2025). Digital image copyright protection and management approach—Based on artificial intelligence and blockchain technology. Journal of Theoretical and Applied Electronic Commerce Research, 20, 76. Doi: https://doi.org/10.3390/jtaer20020076
  • Yang, F., Abedin, M. Z., Qiao, Y., and Ye, L. (2024). Toward Trustworthy Governance of AI-Generated Content (AIGC): A Blockchain-Driven Regulatory Framework for Secure Digital Ecosystems. IEEE Transactions on Engineering Management, 71, 14945–14962.
  • Zhang, Q., et al. (2025). Exploring Edge-Driven Collaborative Fine-Tuning toward Customized AIGC Services. IEEE Network, 39, 293–301.
  • Zhang, Q., Wu, Gr., Yang, R., et al. (2024). Digital image copyright protection method based on blockchain and zero trust mechanism. Multimedia Tools and Applications, 83, 77267–77302.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dijital Pazarlama
Bölüm Araştırma Makalesi
Yazarlar

Mevlüt Uysal 0000-0002-6934-4421

Gönderilme Tarihi 2 Ağustos 2025
Kabul Tarihi 9 Ekim 2025
Erken Görünüm Tarihi 27 Ekim 2025
Yayımlanma Tarihi 27 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 3

Kaynak Göster

APA Uysal, M. (2025). A multi-agent framework for verifiable AIGC licensing in digital ecosystems. Gazi İktisat ve İşletme Dergisi, 11(3), 327-346. https://doi.org/10.30855/gjeb.2025.11.3.009
22273
Gazi İktisat ve İşletme Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.