Araştırma Makalesi
BibTex RIS Kaynak Göster

Açık Uçlu Maddelerin Puanlanmasında ChatGPT ve Gerçek Puanlayıcıların Puanlayıcılar Arası Güvenirlik Bakımından İncelenmesi

Yıl 2023, , 1072 - 1099, 31.10.2023
https://doi.org/10.46778/goputeb.1345752

Öz

Bu araştırmanın amacı, açık uçlu maddelere verilen yanıtlar için yapay zekâ tabanlı bir araç olan ChatGPT ve iki gerçek puanlayıcı tarafından puanlama anahtarlarına göre yapılan puanlamanın puanlayıcılar arası güvenirlik bakımından incelenmesidir. Araştırmanın çalışma grubunu, 2022-2023 eğitim öğretim yılında Eskişehir ilinde öğrenim gören 13-15 yaş grubundan 30 öğrenci oluşturmaktadır. Araştırmanın verileri, Uluslararası Öğrenci Değerlendirme Programı-PISA Okuma Becerileri alanında yayımlanmış örnek sorular arasından seçilen 16 açık uçlu madde yardımıyla yüz yüze toplanmıştır. Puanlayıcılar arası güvenirliği belirlemek amacıyla korelasyon, uyuşma yüzdesi ve Genellenebilirlik kuramından yararlanılmıştır. Korelasyon analizlerinde SPSS 25, uyuşma yüzdesinin analizlerinde Excel ve genellenebilirlik kuramı analizlerinde EduG 6.1 programları kullanılmıştır. Araştırma sonuçları, puanlayıcılar arasında pozitif yönlü ve yüksek düzeyde bir ilişki olduğunu, puanlayıcıların yüksek oranda uyuşma gösterdiğini ve Genellenebilirlik kuramı kullanılarak hesaplanan güvenirlik (G) katsayılarının, korelasyon değerleri ve uyuşma yüzdelerine kıyasla daha düşük olduğunu göstermiştir. Bunun yanı sıra cevabı doğrudan metnin içinde geçen ve kısa cevaplı olan maddelere verilen yanıtların puanlanmasında tüm puanlayıcıların birbirleriyle mükemmel pozitif korelasyon ve tam uyuşma gösterdiği belirlenmiştir. Ayrıca Genellenebilirlik kuramı sonuçlarına göre toplam varyansı ana etkiler arasından en çok maddelerin (m), etkileşim etkileri arasından ise en çok öğrenci-madde etkileşiminin (öxm) açıkladığı görülmüştür. Sonuçta, uygulamaya dönük olarak eğitimcilere, kalabalık sınıflarda veya zamanın kısıtlı olduğu durumlarda özellikle puanlaması uzun zaman alan açık uçlu maddeler puanlanırken ChatGPT gibi yapay zekâ tabanlı araçlardan destek almaları önerilebilir.

Kaynakça

  • Aiken, L. R. (2000). Psychological testing and assessment. Allyn and Bacon.
  • Aktay, S., Seçkin, G. Ö. K., & Uzunoğlu, D. (2023). ChatGPT in education. TAY Journal, 7(2), 378-406. https://doi.org/10.29329/tayjournal.2023.543.03
  • Atılgan, H. (2005). Generalizability theory and a sample application for inter-rater reliability. Educational Sciences and Practice, 4(7), 95-108. http://www.ebuline.com/pdfs/7Sayi/7_6.pdf
  • Atılgan, H., Kan, A., & Doğan, N. (2011). Eğitimde ölçme ve değerlendirme [Measurement and evaluation in education]. (5th ed.) Anı Yayıncılık.
  • Baykul, Y. (2000) Eğitimde ve psikolojide ölçme: Klasik Test Teorisi ve uygulaması [Measurement in education and psychology: Classical Test Theory and its application]. ÖSYM Yayınları.
  • Bilgen, Ö. B., & Doğan, N. (2017). The comparison of interrater reliability estimating techniques. Journal of Measurement and Evaluation in Education and Psychology, 8(1), 63-78. https://doi.org/10.21031/epod.294847
  • Brennan, R. L. (2001). Generalizability Theory. Springer-Verlag.
  • Büyüköztürk, Ş., Çakmak, E. Kılıç, A., Özcan, E., Karadeniz, Ş., & Demirel, F. (2011). Bilimsel araştırma yöntemleri [Scientific research methods]. Pegem Akademi.
  • Doğan, N. (Ed.). (2021). Eğitimde ölçme ve değerlendirme [Measurement and evaluation in education]. Pegem Akademi.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Crocker, L. M., & Algina, L. (1986). Introduction to classical and modern test theory. Holt, Rinehart and Winson.
  • Çakıcı Eser, D., & Gelbal, S. (2012). Comparison of interrater agreement Calculated with generalizability theory and logistic regression. Kastamonu Education Journal, 21(2), 423-438. https://acikerisim.kku.edu.tr/xmlui/handle/20.500.12587/1380
  • Gage, N. A., Prykanowski, D., & Hirn, R. (2014). Increasing reliability of direct observation measurement approaches in emotional and/or behavioral disorders research using generalizability theory. Behavioral Disorders, 39(4), 228-244. https://doi.org/10.1177/019874291303900407
  • Goodwin, L. D., & Goodwin, W. L. (1991). Using generalizability theory in early childhood special education. Journal of Early Intervention, 15(2), 193-204. https://doi.org/10.1177/105381519101500208
  • Goodwin, L. D., Sands, D. J., & Kozleski, E. B. (1991). Estimating interinterviewer reliability for interview schedules used in special education research. The Journal of Special Education, 25(1), 73-89. https://doi.org/10.1177/002246699102500105
  • Goodwin, L. D. (2001). Interrater agreement and reliability. Measurement in Physical Education and Exercise Science, 5(1), 13-34. https://doi.org/10.1207/S15327841MPEE0501_2
  • Göktaş, L. S. (2023). Can ChatGPT succeed in distance education exams? A research on accuracy and verification in tourism. Journal of Tourism & Gastronomy Studies, 11(2), 892-905. https://doi.org/10.21325/jotags.2023.1224
  • Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692
  • Güler, N., & Teker, G. T. (2015). The evaluation of rater reliability of open ended items obtained from different approaches. Journal of Measurement and Evaluation in Education and Psychology, 6(1), 12-24. https://doi.org/10.21031/epod.63041
  • Gümüş, F. Ö., & Arıkan, Ç. A. (2020). Investigation of solutions of mathematical problems using multiple representations in terms of inter-rater reliability. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 14(1), 606-628. https://doi.org/10.17522/balikesirnef.687639
  • Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 23-34. https://doi.org/10.20982/tqmp.08.1.p023
  • Hill, H. C., Charalambous, C. Y., & Kraft, M. A. (2012). When rater reliability is not enough: Teacher observation systems and a case for the generalizability study. Educational Researcher, 41(2), 56-64. https://doi.org/10.3102/0013189X12437203
  • İlhan, M. (2016). A comparison of the ability estimations of classical test theory and the many facet Rasch model in measurements with open-ended questions. Hacettepe University Journal of Education, 31(2), 346-368. https://doi.org/10.16986/HUJE.2016015182
  • Kan, A. (2005). The effect of using grading scale and answer key to grader’s reliability. Eurasian Journal of Educational Research, 20. 166-177. https://web.s.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=50df9fc0-9dbc-43f8-a338-7a1110d5ce44%40redis
  • Lilford, R., Edwards, A., Girling, A., Hofer, T., Di Tanna, G. L., Petty, J., & Nicholl, J. (2007). Inter-rater reliability of case-note audit: A systematic review. Journal of Health Services Research & Policy, 12(3), 173-180. https://doi.org/10.1258/135581907781543012
  • Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
  • Lord, F. M., & Novick, M. R. (1968) Statistical theory of mental test scores. Addison-Wesley.
  • Mancar, S. A. (2019). The comparison of inter rater reliability estimating Techniques in performance based assessment. [Unpublished Master Thesis]. Ankara University.
  • Meyer, G. J. (1999). Simple procedures to estimate chance agreement and kappa for the interrater reliability of response segments using the Rorschach Comprehensive System. Journal of Personality Assessment, 72(2), 230-255. https://doi.org/10.1207/S15327752JP720209
  • Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050. https://doi.org/10.1016/j.rmal.2023.100050
  • OpenAI. (2015). OpenAI. https://openai.com/about
  • Opara, E., Mfon-Ette Theresa, A., & Aduke, T. C. (2023). ChatGPT for teaching, learning and research: Prospects and challenges. Global Academic Journal of Humanities and Social Sciences, 5(2), 33-40. https://doi.org/10.36348/gajhss.2023.v05i02.001
  • Öksüzoğlu, M. (2022). The investigation of items measuring high-level thinking skills in terms of student score and score reliability. [Unpublished Doctoral Dissertation]. Hacettepe University.
  • Özşavlı, M. (2023). The effect of peer feedback on the writing skills of students learning Turkish as a foreign language. International Journal of Turkish Literature Culture Education, 12(1), 253-273. https://doi.org/10.7884/teke.5638
  • Park, C. U., & Kim, H. J. (2015). Measurement of inter-rater reliability in systematic review. Hanyang Medical Reviews, 35(1), 44-49. https://doi.org/10.7599/hmr.2015.35.1.44
  • Pekin, Z., Çetin, S., & Güler, N. (2018). Comparison of Interrater Reliability Based on Different Theories for Autism Social Skills Profile. Journal of Measurement and Evaluation in Education and Psychology, 9(2), 202-215. https://doi.org/10.21031/epod.388590
  • Seheryeli, M. Y. (2018). An examination of the reliability estimates of a scoring rubric of a writing skill examination using the classical test theory, generalizability theory and the item response theory models. [Unpublished Master Thesis]. Gazi University.
  • Shavelson, R. J. & Webb, N. M. (1991). Generalizability Theory: A Primer. Sage Publications.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçmelerde güvenirlik ve geçerlik [Reliability and validity in social and behavioural measurements]. Sözkesen Matbaacılık.
  • Tabachnick, B. G., & Fidell, L. S. (2014). Using Multivariate Statistics. Pearson.
  • Tapan Broutin, M. S. (2023). Examination of questions asked by pre-service mathematics teachers in their initial experiences with ChatGPT. Journal of Uludag University Faculty of Education, 36(2), 1-26. https://doi.org/10.19171/uefad.1299680
  • Turgut, M. F. (1993). Eğitimde ölçme ve değerlendirme metotları. Saydam Matbaacılık.
  • Wilson, M. H., Ashworth, E., Hutchinson, P. J., & British Neurotrauma Group. (2022). A proposed novel traumatic brain injury classification system–an overview and inter-rater reliability validation on behalf of the Society of British Neurological Surgeons. British Journal of Neurosurgery, 36(5), 633-638. https://doi.org/10.1080/02688697.2022.2090509
  • Zileli, E. N. (2023). ChatGPT example in learning Turkish as a foreign language. International Journal of Karamanoğlu Mehmetbey Educatioanal Research, 5(1), 42-51. https://doi.org/10.47770/ukmead.1296013

Investigation of ChatGPT and Real Raters in Scoring Open-Ended Items in Terms of Inter-Rater Reliability

Yıl 2023, , 1072 - 1099, 31.10.2023
https://doi.org/10.46778/goputeb.1345752

Öz

The aim of this study is to examine the inter-rater reliability of the responses to open-ended items scored by ChatGPT, an artificial intelligence-based tool, and two real raters according to the scoring keys. The study group consists of 30 students, aged between 13 and 15, studying in Eskişehir province in the 2022-2023 academic year. The data of the study were collected face-to-face with the help of 16 open-ended items selected from the sample questions published in the International Student Assessment Program-PISA Reading Skills. Correlation, percentage of agreement and the Generalizability theory were used to determine inter-rater reliability. SPSS 25 was used for correlation analysis, Excel for percentage of agreement analysis, and EduG 6.1 for the Generalizability theory analysis. The results of the study showed that there was a positive and high level of correlation between the raters, the raters showed a high level of agreement, and the reliability (G) coefficients calculated using the Generalizability theory were lower than the correlation values and percentage of agreement. In addition, it was determined that all raters showed excellent positive correlation and full agreement with each other in the scoring of the answers given to the short-answer items whose answers were directly in the text. In addition, according to the results of the Generalizability theory, it was found out that the items (i) explained the total variance the most among the main effects and the student-item interaction (sxi) explained the most among the interaction effects. As a result, it can be suggested to educators to get support from artificial intelligence-based tools such as ChatGPT when scoring open-ended items that take a long time to score, especially in crowded classes or when time is limited.

Kaynakça

  • Aiken, L. R. (2000). Psychological testing and assessment. Allyn and Bacon.
  • Aktay, S., Seçkin, G. Ö. K., & Uzunoğlu, D. (2023). ChatGPT in education. TAY Journal, 7(2), 378-406. https://doi.org/10.29329/tayjournal.2023.543.03
  • Atılgan, H. (2005). Generalizability theory and a sample application for inter-rater reliability. Educational Sciences and Practice, 4(7), 95-108. http://www.ebuline.com/pdfs/7Sayi/7_6.pdf
  • Atılgan, H., Kan, A., & Doğan, N. (2011). Eğitimde ölçme ve değerlendirme [Measurement and evaluation in education]. (5th ed.) Anı Yayıncılık.
  • Baykul, Y. (2000) Eğitimde ve psikolojide ölçme: Klasik Test Teorisi ve uygulaması [Measurement in education and psychology: Classical Test Theory and its application]. ÖSYM Yayınları.
  • Bilgen, Ö. B., & Doğan, N. (2017). The comparison of interrater reliability estimating techniques. Journal of Measurement and Evaluation in Education and Psychology, 8(1), 63-78. https://doi.org/10.21031/epod.294847
  • Brennan, R. L. (2001). Generalizability Theory. Springer-Verlag.
  • Büyüköztürk, Ş., Çakmak, E. Kılıç, A., Özcan, E., Karadeniz, Ş., & Demirel, F. (2011). Bilimsel araştırma yöntemleri [Scientific research methods]. Pegem Akademi.
  • Doğan, N. (Ed.). (2021). Eğitimde ölçme ve değerlendirme [Measurement and evaluation in education]. Pegem Akademi.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. https://doi.org/10.1177/001316446002000104
  • Crocker, L. M., & Algina, L. (1986). Introduction to classical and modern test theory. Holt, Rinehart and Winson.
  • Çakıcı Eser, D., & Gelbal, S. (2012). Comparison of interrater agreement Calculated with generalizability theory and logistic regression. Kastamonu Education Journal, 21(2), 423-438. https://acikerisim.kku.edu.tr/xmlui/handle/20.500.12587/1380
  • Gage, N. A., Prykanowski, D., & Hirn, R. (2014). Increasing reliability of direct observation measurement approaches in emotional and/or behavioral disorders research using generalizability theory. Behavioral Disorders, 39(4), 228-244. https://doi.org/10.1177/019874291303900407
  • Goodwin, L. D., & Goodwin, W. L. (1991). Using generalizability theory in early childhood special education. Journal of Early Intervention, 15(2), 193-204. https://doi.org/10.1177/105381519101500208
  • Goodwin, L. D., Sands, D. J., & Kozleski, E. B. (1991). Estimating interinterviewer reliability for interview schedules used in special education research. The Journal of Special Education, 25(1), 73-89. https://doi.org/10.1177/002246699102500105
  • Goodwin, L. D. (2001). Interrater agreement and reliability. Measurement in Physical Education and Exercise Science, 5(1), 13-34. https://doi.org/10.1207/S15327841MPEE0501_2
  • Göktaş, L. S. (2023). Can ChatGPT succeed in distance education exams? A research on accuracy and verification in tourism. Journal of Tourism & Gastronomy Studies, 11(2), 892-905. https://doi.org/10.21325/jotags.2023.1224
  • Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692
  • Güler, N., & Teker, G. T. (2015). The evaluation of rater reliability of open ended items obtained from different approaches. Journal of Measurement and Evaluation in Education and Psychology, 6(1), 12-24. https://doi.org/10.21031/epod.63041
  • Gümüş, F. Ö., & Arıkan, Ç. A. (2020). Investigation of solutions of mathematical problems using multiple representations in terms of inter-rater reliability. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 14(1), 606-628. https://doi.org/10.17522/balikesirnef.687639
  • Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 23-34. https://doi.org/10.20982/tqmp.08.1.p023
  • Hill, H. C., Charalambous, C. Y., & Kraft, M. A. (2012). When rater reliability is not enough: Teacher observation systems and a case for the generalizability study. Educational Researcher, 41(2), 56-64. https://doi.org/10.3102/0013189X12437203
  • İlhan, M. (2016). A comparison of the ability estimations of classical test theory and the many facet Rasch model in measurements with open-ended questions. Hacettepe University Journal of Education, 31(2), 346-368. https://doi.org/10.16986/HUJE.2016015182
  • Kan, A. (2005). The effect of using grading scale and answer key to grader’s reliability. Eurasian Journal of Educational Research, 20. 166-177. https://web.s.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=50df9fc0-9dbc-43f8-a338-7a1110d5ce44%40redis
  • Lilford, R., Edwards, A., Girling, A., Hofer, T., Di Tanna, G. L., Petty, J., & Nicholl, J. (2007). Inter-rater reliability of case-note audit: A systematic review. Journal of Health Services Research & Policy, 12(3), 173-180. https://doi.org/10.1258/135581907781543012
  • Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
  • Lord, F. M., & Novick, M. R. (1968) Statistical theory of mental test scores. Addison-Wesley.
  • Mancar, S. A. (2019). The comparison of inter rater reliability estimating Techniques in performance based assessment. [Unpublished Master Thesis]. Ankara University.
  • Meyer, G. J. (1999). Simple procedures to estimate chance agreement and kappa for the interrater reliability of response segments using the Rorschach Comprehensive System. Journal of Personality Assessment, 72(2), 230-255. https://doi.org/10.1207/S15327752JP720209
  • Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model for automated essay scoring. Research Methods in Applied Linguistics, 2(2), 100050. https://doi.org/10.1016/j.rmal.2023.100050
  • OpenAI. (2015). OpenAI. https://openai.com/about
  • Opara, E., Mfon-Ette Theresa, A., & Aduke, T. C. (2023). ChatGPT for teaching, learning and research: Prospects and challenges. Global Academic Journal of Humanities and Social Sciences, 5(2), 33-40. https://doi.org/10.36348/gajhss.2023.v05i02.001
  • Öksüzoğlu, M. (2022). The investigation of items measuring high-level thinking skills in terms of student score and score reliability. [Unpublished Doctoral Dissertation]. Hacettepe University.
  • Özşavlı, M. (2023). The effect of peer feedback on the writing skills of students learning Turkish as a foreign language. International Journal of Turkish Literature Culture Education, 12(1), 253-273. https://doi.org/10.7884/teke.5638
  • Park, C. U., & Kim, H. J. (2015). Measurement of inter-rater reliability in systematic review. Hanyang Medical Reviews, 35(1), 44-49. https://doi.org/10.7599/hmr.2015.35.1.44
  • Pekin, Z., Çetin, S., & Güler, N. (2018). Comparison of Interrater Reliability Based on Different Theories for Autism Social Skills Profile. Journal of Measurement and Evaluation in Education and Psychology, 9(2), 202-215. https://doi.org/10.21031/epod.388590
  • Seheryeli, M. Y. (2018). An examination of the reliability estimates of a scoring rubric of a writing skill examination using the classical test theory, generalizability theory and the item response theory models. [Unpublished Master Thesis]. Gazi University.
  • Shavelson, R. J. & Webb, N. M. (1991). Generalizability Theory: A Primer. Sage Publications.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçmelerde güvenirlik ve geçerlik [Reliability and validity in social and behavioural measurements]. Sözkesen Matbaacılık.
  • Tabachnick, B. G., & Fidell, L. S. (2014). Using Multivariate Statistics. Pearson.
  • Tapan Broutin, M. S. (2023). Examination of questions asked by pre-service mathematics teachers in their initial experiences with ChatGPT. Journal of Uludag University Faculty of Education, 36(2), 1-26. https://doi.org/10.19171/uefad.1299680
  • Turgut, M. F. (1993). Eğitimde ölçme ve değerlendirme metotları. Saydam Matbaacılık.
  • Wilson, M. H., Ashworth, E., Hutchinson, P. J., & British Neurotrauma Group. (2022). A proposed novel traumatic brain injury classification system–an overview and inter-rater reliability validation on behalf of the Society of British Neurological Surgeons. British Journal of Neurosurgery, 36(5), 633-638. https://doi.org/10.1080/02688697.2022.2090509
  • Zileli, E. N. (2023). ChatGPT example in learning Turkish as a foreign language. International Journal of Karamanoğlu Mehmetbey Educatioanal Research, 5(1), 42-51. https://doi.org/10.47770/ukmead.1296013
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitimde ve Psikolojide Ölçme Teorileri ve Uygulamaları
Bölüm Makaleler
Yazarlar

Seda Demir 0000-0003-4230-5593

Yayımlanma Tarihi 31 Ekim 2023
Gönderilme Tarihi 18 Ağustos 2023
Kabul Tarihi 22 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Demir, S. (2023). Investigation of ChatGPT and Real Raters in Scoring Open-Ended Items in Terms of Inter-Rater Reliability. International Journal of Turkish Education Sciences, 2023(21), 1072-1099. https://doi.org/10.46778/goputeb.1345752