Araştırma Makalesi
BibTex RIS Kaynak Göster

Designing a Draft for a Metaheuristic Curriculum Evaluation Model (MCEM) Based on the Examination of Various Metaheuristic Artificial Intelligence Optimization Applications

Yıl 2024, Cilt: 12 Sayı: 2, 989 - 1055, 29.07.2024
https://doi.org/10.46778/goputeb.1463058

Öz

This paper explores the integration of metaheuristic artificial intelligence (AI) optimization algorithms into the process of curriculum evaluation, proposing a novel approach that could enhance educational outcomes. A meta-synthesis of the existing literature on the application of AI optimization techniques—such as tabu search, simulated annealing, genetic algorithms, and ant colony optimization—in educational contexts was conducted. This study revealed a scarcity of direct applications of these algorithms in curriculum evaluation, thus identifying a gap in research and an opportunity for exploration. We proposed detailed models for adapting various metaheuristic optimization algorithms to assess curriculum components, including objectives, content, teaching methodologies, and assessment strategies. Our paper synthesizes insights from the literature review and suggests avenues for experimental studies to assess the effectiveness of AI optimization algorithms across diverse educational levels and curricula. Furthermore, we introduce a draft of the Metaheuristic Curriculum Evaluation Model (MCEM), synthesized from the reviewed optimization models and curriculum evaluation processes. This exploration into the integration of metaheuristic AI optimization algorithms within curriculum evaluation highlights a promising frontier in educational research. By detailing potential applications, addressing methodological rigor, and considering context-specific nuances, this paper lays the groundwork for future studies that could evaluate how curricula are developed, evaluated, and optimized from a different perspective.

Kaynakça

  • Alhunitah, H., & Menai, M.E. (2016). Solving the student grouping problem in e-learning systems using swarm intelligence metaheuristics. Computer Applications in Engineering Education, 24(6), 831-842. https://doi.org/10.1002/cae.21752
  • Aram, K. (2012). Parçacık sürü optimizasyon algoritmasi ile çok ölçütlü performans değerlendirme modelinin oluşturulmasi [Creating multi criteria performance evaluation model with using particle swarm optimization], [Unpublished master’s thesis]. Marmara University.
  • Arashpour, M., Golafshani, E.M., Parthiban, R., Lamborn, J., Kashani, A., Li, H., & Farzanehfar, P. (2023). Predicting individual learning performance using machine-learning hybridized with the teaching-learning-based optimization. Computer Applications in Engineering Education, 31(1), 83-99. https://doi.org/10.1002/cae.22572
  • Arslan, H. (2018). Realization of robot speed control with FPGA using taboo search algorithm, [Unpublished master’s thesis]. Kocaeli Üniversity
  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308. https://doi.org/10.1145/937503.937505
  • Brown, J. D. (1995). The elements of language curriculum. Heinle &Heinle Publishers
  • Can, B. (2022). Ant colony algorithm for household care/nutrition service direction problem with time window and fuzzy demand, [Unpublished master’s thesis], Mersin University.
  • Cao Y. J., & Wu Q. H. (1999). Teaching genetic algorithm using matlab. International Journal of Electrical Engineering & Education, 36(2), 139-153. https://doi.org/10.7227/IJEEE.36.2.4
  • Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153, 107086. https://doi.org/10.1016/j.cie.2020.107086
  • Demirel. Ö. (2007). Kuramdan uygulamaya eğitimde program geliştirme [Curriculum development in education from theory to practice]. Pegem
  • De Castro, L. N., &Von Zubben, F. J. (2000a). The clonal selection algorithm with engineering applications. Artificial Immune Workshop, Genetic and Evolutionary Computation Conference (GECCO), Las Vegas, Nevada, ABD, 36-37.
  • Duan, H. B., Li, P., Shi, Y. H. Zhang, X. Y., & Sun, C. H. (2015). Interactive learning environment for bio-inspired optimization algorithms for UAV path planning. IEEE Transactions on Education, 58(4), 276-281. https://doi.org/10.1109/TE.2015.2402196
  • Dumlu, H. (2023). A self-adaptive differential evolution algorithm design and implementation, [Unpublished M.S. Thesis], Kütahya Dumlupınar University
  • Dwivedi, P., Kant, V., & Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable length genetic algorithm. Educational Technology Research and Development, 23(2), 819-836. https://doi.org/10.1007/s10639-017-9637-7
  • El Fazazi, H. Qbadou, M., & Mansouri, K. (2019). Personalized learning path recommendation based on learning activities for specific students' needs. In L.G. Chova, A.L. Martinez, & I.C. Torres (Eds.), 12th International Conference of Education, Research, and Innovation (ICERI2019) - ICERI Proceedings (pp. 11194-11194).
  • Gökçe, H., Top, N., & Şahin, İ. (2019). Investigatıon of miınimum weıght problem for spur gear usıng cad based simulated annealıng algorithms, 19th national machine theory symposium. Iskenderun Technical University.
  • Gülcü, Ş. (2017). Parallelization of the particle swarm and ant colony optimization algorithms by using the greedy information swap strategy, [Unpublished doctoral thesis], Selçuk University.
  • Gülüm, İ. V. (2016). Mindfulness training and practice for effective therapist characteristics: A meta-synthesis study. Current Approaches in Psychiatry, 8(4), 337-353. https://doi.org/10.18863/pgy.253439
  • Gürbüz, Ö. (2015). Application of tabu search algorithm to queue problem, [Unpublished M.S. Thesis], Hacettepe University.
  • Hoe, D. (2014). Promoting undergraduate research in the electrical engineering curriculum. In ASEE Annual Conference & Exposition, Proceedings Paper. ASEE.
  • Hussain, S., Muhsin, Z.F., Salal, Y.K., Theodorou, P., Kurtoglu, F., & Hazarika, G.C. (2019). Prediction model on student performance based on internal assessment using deep learning. International Journal of Emerging Technologies in Learning, 14(8), 4-22. https://doi.org/10.3991/ijet.v14i08.10001
  • İyitoğlu, O., & Gürol. M. (2017). Michael Scriven: Değerlendirme üzerine kavramsal devrim önerileri [Michael Scriven: Conceptual revolution suggestions on evaluation]. International Journal of Social Research, 10 (49), 452-458.
  • Jiang, H., & Lu, C. (2022). Information exchange platform for digital art teaching in colleges and universities based on Internet of Things technology. International Journal of Continuing Engineering Education and Life-Long Learning, 32(4), 459-473. https://doi.org/10.1504/IJCEELL.2022.124969
  • Kandemir, A. (2016). An evaluation of 2nd grade English curriculum within a participant oriented program evaluation approach, [Unpublished master’s thesis], Pamukkale University.
  • Karaboğa, D. (2018). Yapay eka optimisazyon algoritmaları [Artificial intelligence optimization algorithms], Nobel akademi.
  • Keser, B. (2020). Karınca kolonisi optimizasyon algoritması [Ant colony optimization algorithm]. https://medium.com/@berkekeser/kar%C4%B1nca-kolonisi-optimizasyon-algoritmas%C4%B1-4da0b37cb393
  • Khamparia, A., & Pandey, B. (2015). Knowledge and intelligent computing methods in e-learning. International Journal of Technology Enhanced Learning, 7(3), 221-242. https://doi.org/10.1504/IJTEL.2015.072810
  • Kickmeier-Rust, M. D., & Holzinger, A. (2019). Interactive ant colony optimization to support adaptation in serious games. International Journal of Serious Games, 6(3), 37-50. https://doi.org/10.17083/ijsg.v6i3.308
  • Kocabatmaz, H. (2011). The evaluation of the technology and design curriculum, [Unpublished doctoral thesis], Ankara University.
  • Lee, C. Y., Ruan, L. M., Lee, Z. J., Huang, J. Q., Yao, J., Ning, Z. Y., & Tu, J. F. (2021). Study on the university students' satisfaction of the wisdom tree massive open online course platform based on parameter optimization intelligent algorithm. Science progress, 104(3_suppl), 368504211054256. https://doi.org/10.1177/00368504211054256
  • Li, R. X. (2019). Adaptive learning model based on ant colony algorithm. International Journal of Emerging Technologies in Learning, 14(1), 49-57. https://doi.org/10.3991/ijet.v14i01.9487
  • Qiang, L., Xin, K., Yu, G., Yi, S., Liping, S., & Feixue, Y. (2017). Influence mechanism of external social capital of university teachers on evolution of generative digital learning resources of educational technology of university teachers - empirical analysis of differential evolution algorithm and structural equation model of bootstrap self-extraction technique. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 5327-5341. https://doi.org/10.12973/eurasia.2017.00985a
  • Madalina, M., & Serbanescu, L. (2016). Application software architecture for learning physics, based on ant colony optimization type mechanisms. In M. Vlada, G. Albeanu, A. Adascalitei, & M. Popovici (Eds.), Proceedings of the 11th International Conference on Virtual Learning (pp. 334-338). Proceedings of the International Conference on Virtual Learning.
  • Mohammadi, M. O. (2022). Zaman-maliyet-kalite ödünleşim problemlerinin çözümünde baskın olmayan sıralma-II öğretme-öğrenme tabanlı optimizasyon'nun (NDSII-TLBO) kullanılması [Using non-dominated sorting-II teaching learning-based optimization (NDSII-TLBO) in solving time-cost-quality trade-off problems], [Unpublished master’s thesis], Karadeniz Technical University.
  • Menai, M. E. B. Alhunitah, H., & Al-Salman, H. (2018). Swarm intelligence to solve the curriculum sequencing problem. Computer Applications in engineering Education, 26(5), 1393-1404. https://doi.org/10.1002/cae.22046
  • Niknam, M., & Thulasiraman, P. (2020). LPR: A bio-inspired intelligent learning path recommendation system based on meaningful learning theory. Education and Information Technologies, 25(5), 3797-3819. https://doi.org/10.1007/s10639-020-10133-3
  • Rao, R.V., Savsani, V.J., & Vakharia, D.P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. https://doi.org/10.1016/j.cad.2010.12.015
  • Özdemir, S.M. (2009). Curriculum evaluation in education and examination of the curriculum evaluation studies in Turkey. Van Yüzüncü Yıl University Faculty of Education Journal, 6(2), 126-149.
  • Rashid, T.A., & Ahmad, H.A. (2016). Lecturer performance system using neural network with Particle Swarm Optimization. Computer Applications in Engineering Education, 24(4), 629-638. https://doi.org/10.1002/cae.21737
  • Rastegarmoghadam, M., & Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22(3), 1067-1087. https://doi.org/10.1007/s10639-016-9472-2
  • Richards, J.C. (2003). Curriculum development in language teaching. Cambridge University Press.
  • Samigulina, G., & Samigulina, Z. (2016). Intelligent system of distance education of engineers, based on modern innovative technologies. In J. Domenech, M.C. VincentVela, R. PenaOrtiz, E. DeLaPoza, & D. Blazquez (Eds.), 2nd International Conference on Higher Education Advances, HEAD'16 (Vol. 228, ss. 229-236). https://doi.org/10.1016/j.sbspro.2016.07.034
  • Sharma, P., & Harkishan, M. (2022). Designing an intelligent tutoring system for computer programming in the Pacific. Journal of Computers in Education, 27(5), 6197-6209. https://doi.org/10.1007/s10639-021-10882-9
  • Shen, C. C., & Qi, A. L. (2020). An adaptive learning model of "Public psychology" based on creative thinking with virtual simulation technology. International Journal of Emerging Technologies in Learning, 15 (23), 131-144. https://doi.org/10.3991/ijet.v15i23.18957
  • Shukhman, A. E., Bolodurina, I. P., Polezhaev, P. N., Ushakov, Y. A., & Legashev, L. V. (2018). Adaptive technology to support talented secondary school students with the educational IT infrastructure. In Proceedings of 2018 IEEE Global Engineering Education Conference (EDUCON) - Emerging Trends and Challenges of Engineering Education (pp. 993-998). IEEE.
  • Shyr, W.J. (2010). Parameters determination for optimum design by evolutionary algorithm. Convergence and Hybrid Information Technologies. In M. Crisan (Ed.). Convergence and hybrid ınformation Technologies, https://doi.org/10.5772/9638
  • Şahin, T. (2019). Multi objective design optimızatıon of bearings using grey wolf optimization technique, [Unpublished master’s thesis]. Gazi University.
  • Uşun, S. (2012). Eğitimde Program Değerlendirme [Curriculum Evaluation in Education]. Anı Yayınları
  • Ünal, M. (2013). The evaluation of European Union Erasmus Student Mobility Programme in the framework of CIP (context, input, process, product) evaluation model, [Unpublished doctoral thesis], Gazi University.
  • Tanış, Y. (2019). Analysis of radio frequency electromagnetic waves of compact flourescent lamps using artificial immune system, [Unpublished master’s thesis], Ankara University.
  • Vuong, Q. L., Rigaut, C., & Gossuin, Y. (2018). Refraction law and Fermat principle: a project using the ant colony optimization algorithm for undergraduate students in physics. European Journal of Physics, 39(4), 045806. https://doi.org/10.1088/1361-6404/aab6e0
  • Yapıcı, M.M. (2012). Development of a timetabling software using genetic algorithm, [Unpublished master’s thesis]. Gazi University.
  • Yetkin, Y. (2019). Genetic algorithm approach to estimate PISA success, [Unpublished master’s thesis], Van Yüzüncü Yıl University.
  • Yepes, V., Gonzalez-Vidosa, F., Marti, JV., & Alcala, J. (2011). A short postgraduate course on heuristic design of prestressed concrete road bridge decks. In L.G. Chova, I.C. Torres, & A.L. Martinez (Eds.), INTED2011: 5th International Technology, Education and Development Conference, 5132-5141.
  • Yurttakal, H. (2014). Solving permutation flowshop scheduling problem by artificial immune system, [Unpublished master’s thesis], Selçuk University.
  • Yüksel, İ. (2010). Development of Turkish program evaluation standards, [Unpublished doctoral thesis], Anadolu University.
  • Wang, P. Xu, X., &Liu, C. (2019). An improved adaptive genetic algorithm and its application in intelligent course scheduling system," 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 2019, pp.. 121-125, https://doi.org/10.1109/ICISCE48695.2019.00034
  • Wang, F.R., Wang, W.H. Pan, Q.K. Zuo, F.C., & Liang, J.J. (2009a). A novel test-sheet composition approach using differential evolution algorithm for computer-aided testing systems. In C. Zhao (Ed.), ICAIE 2009: Proceedings of the 2009 International Conference on Artificial Intelligence and Education, Vols 1 and 2 (pp. 794-800).
  • Wang, F.R. Wang, W.H. Pan, Q.K., Zuo, F.C., & Liang, J.J. (2009b). A novel online test-sheet composition approach for web-based testing. In H. Liu & X.G. Zheng (Eds.), 2009 IEEE International Symposium on IT in Medicine & Education, Vols 1 and 2, Proceedings (pp. 700-+). https://doi.org/10.1109/ITIME.2009.5236331
  • Weed, M. (2005). Meta interpretation: A method for the interpretive synthesis of qualitative research. http://www.qualitative-research.net/index.php/fqs/ article/view/508/1096
  • Wong, L. H., & Looi, C. K. (2012). Swarm intelligence: new techniques for adaptive systems to provide learning support. Educational Technology Research and Development, 20(1), 19-40. https://doi.org/10.1080/10494821003714681
  • Zan, C. (2019). A distributed distribution and scheduling algorithm of educational resources based on vector space model. International Journal of Emerging Technologies in Learning, 14(4), 58-72. https://doi.org/10.3991/ijet.v14i04.10132
  • Zervoudakis, K., Mastrothanasis, K., & Tsafarakis, S. (2020). Forming automatic groups of learners using particle swarm optimization for applications of differentiated instruction. Computer Applications in Engineering Education, 28(2), 282-292. https://doi.org/10.1002/cae.22191
  • Zilinskiene, I., Dagiene, V., & Kurilovas, E. (2012). A swarm-based approach to adaptive learning: Selection of a dynamic learning scenario. In H. Beldhuis (Ed.), Proceedings of the 11th European Conference on E-Learning (pp. 583-593).

Çeşitli Meta-Sezgisel Yapay Zekâ Optimizasyon Uygulamalarının İncelenmesine Dayalı Bir Meta-Sezgisel Eğitim Programı Değerlendirme Modeli Taslağı Tasarlanması

Yıl 2024, Cilt: 12 Sayı: 2, 989 - 1055, 29.07.2024
https://doi.org/10.46778/goputeb.1463058

Öz

Bu araştırma, metasezgisel yapay zeka (AI) optimizasyon algoritmalarının eğitim programı değerlendirme sürecine entegrasyonunu araştırmaktadır ve bunun eğitsel sonuçlarını artırabilecek yeni bir yaklaşım önermektedir. Çalışmada tabu arama, benzetilmiş tavlama, genetik algoritmalar ve karınca kolonisi optimizasyonu gibi yapay zeka optimizasyon tekniklerinin eğitim bağlamlarında uygulanmasına ilişkin mevcut literatürün bir meta sentezi gerçekleştirilmiştir. Bu çalışma, eğitimde program değerlendirmede bu algoritmaların doğrudan uygulanmasının literatürdeki azlığını ortaya çıkarmıştır, böylece literatürde bir boşluk ve bir keşif fırsatı olduğunu göstermiştir. Hedefler, içerik, öğretim yöntemleri ve değerlendirme stratejileri dahil olmak üzere eğitim programı bileşenlerini değerlendirmek için çeşitli meta-sezgisel optimizasyon algoritmalarını uyarlamak için ayrıntılı modeller önerilmiştir. Makale, literatür taramasından elde edilen bilgileri sentezlemiş ve çeşitli eğitim seviyeleri ve programlarıyla yapay zeka optimizasyon algoritmalarının etkinliğini değerlendirmek için deneysel çalışmalar için yollar önermiştir. Ayrıca, incelenen optimizasyon modellerinden ve eğitim programı değerlendirme süreçlerinden sentezlenen Metasezgisel Eğitim Programı Değerlendirme Modeli'nin bir taslağı sunulmuştur. Meta-sezgisel yapay zeka optimizasyon algoritmalarının eğitimde program değerlendirmesine entegrasyonuna yönelik bu araştırma, eğitim araştırmalarında yeni bir alana vurgu yapmaktadır. Potansiyel uygulamaları detaylandırarak, metodolojik titizliği ele alarak ve bağlama özgü nüansları göz önünde bulundurarak bu çalışmada, eğitimde program geliştirilme, değerlendirilme ve optimize edilme şekline farklı bakacak olan gelecekteki çalışmalara zemin hazırlanmaktadır.

Kaynakça

  • Alhunitah, H., & Menai, M.E. (2016). Solving the student grouping problem in e-learning systems using swarm intelligence metaheuristics. Computer Applications in Engineering Education, 24(6), 831-842. https://doi.org/10.1002/cae.21752
  • Aram, K. (2012). Parçacık sürü optimizasyon algoritmasi ile çok ölçütlü performans değerlendirme modelinin oluşturulmasi [Creating multi criteria performance evaluation model with using particle swarm optimization], [Unpublished master’s thesis]. Marmara University.
  • Arashpour, M., Golafshani, E.M., Parthiban, R., Lamborn, J., Kashani, A., Li, H., & Farzanehfar, P. (2023). Predicting individual learning performance using machine-learning hybridized with the teaching-learning-based optimization. Computer Applications in Engineering Education, 31(1), 83-99. https://doi.org/10.1002/cae.22572
  • Arslan, H. (2018). Realization of robot speed control with FPGA using taboo search algorithm, [Unpublished master’s thesis]. Kocaeli Üniversity
  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308. https://doi.org/10.1145/937503.937505
  • Brown, J. D. (1995). The elements of language curriculum. Heinle &Heinle Publishers
  • Can, B. (2022). Ant colony algorithm for household care/nutrition service direction problem with time window and fuzzy demand, [Unpublished master’s thesis], Mersin University.
  • Cao Y. J., & Wu Q. H. (1999). Teaching genetic algorithm using matlab. International Journal of Electrical Engineering & Education, 36(2), 139-153. https://doi.org/10.7227/IJEEE.36.2.4
  • Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S., & Chakraborty, R. (2021). A novel enhanced whale optimization algorithm for global optimization. Computers & Industrial Engineering, 153, 107086. https://doi.org/10.1016/j.cie.2020.107086
  • Demirel. Ö. (2007). Kuramdan uygulamaya eğitimde program geliştirme [Curriculum development in education from theory to practice]. Pegem
  • De Castro, L. N., &Von Zubben, F. J. (2000a). The clonal selection algorithm with engineering applications. Artificial Immune Workshop, Genetic and Evolutionary Computation Conference (GECCO), Las Vegas, Nevada, ABD, 36-37.
  • Duan, H. B., Li, P., Shi, Y. H. Zhang, X. Y., & Sun, C. H. (2015). Interactive learning environment for bio-inspired optimization algorithms for UAV path planning. IEEE Transactions on Education, 58(4), 276-281. https://doi.org/10.1109/TE.2015.2402196
  • Dumlu, H. (2023). A self-adaptive differential evolution algorithm design and implementation, [Unpublished M.S. Thesis], Kütahya Dumlupınar University
  • Dwivedi, P., Kant, V., & Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable length genetic algorithm. Educational Technology Research and Development, 23(2), 819-836. https://doi.org/10.1007/s10639-017-9637-7
  • El Fazazi, H. Qbadou, M., & Mansouri, K. (2019). Personalized learning path recommendation based on learning activities for specific students' needs. In L.G. Chova, A.L. Martinez, & I.C. Torres (Eds.), 12th International Conference of Education, Research, and Innovation (ICERI2019) - ICERI Proceedings (pp. 11194-11194).
  • Gökçe, H., Top, N., & Şahin, İ. (2019). Investigatıon of miınimum weıght problem for spur gear usıng cad based simulated annealıng algorithms, 19th national machine theory symposium. Iskenderun Technical University.
  • Gülcü, Ş. (2017). Parallelization of the particle swarm and ant colony optimization algorithms by using the greedy information swap strategy, [Unpublished doctoral thesis], Selçuk University.
  • Gülüm, İ. V. (2016). Mindfulness training and practice for effective therapist characteristics: A meta-synthesis study. Current Approaches in Psychiatry, 8(4), 337-353. https://doi.org/10.18863/pgy.253439
  • Gürbüz, Ö. (2015). Application of tabu search algorithm to queue problem, [Unpublished M.S. Thesis], Hacettepe University.
  • Hoe, D. (2014). Promoting undergraduate research in the electrical engineering curriculum. In ASEE Annual Conference & Exposition, Proceedings Paper. ASEE.
  • Hussain, S., Muhsin, Z.F., Salal, Y.K., Theodorou, P., Kurtoglu, F., & Hazarika, G.C. (2019). Prediction model on student performance based on internal assessment using deep learning. International Journal of Emerging Technologies in Learning, 14(8), 4-22. https://doi.org/10.3991/ijet.v14i08.10001
  • İyitoğlu, O., & Gürol. M. (2017). Michael Scriven: Değerlendirme üzerine kavramsal devrim önerileri [Michael Scriven: Conceptual revolution suggestions on evaluation]. International Journal of Social Research, 10 (49), 452-458.
  • Jiang, H., & Lu, C. (2022). Information exchange platform for digital art teaching in colleges and universities based on Internet of Things technology. International Journal of Continuing Engineering Education and Life-Long Learning, 32(4), 459-473. https://doi.org/10.1504/IJCEELL.2022.124969
  • Kandemir, A. (2016). An evaluation of 2nd grade English curriculum within a participant oriented program evaluation approach, [Unpublished master’s thesis], Pamukkale University.
  • Karaboğa, D. (2018). Yapay eka optimisazyon algoritmaları [Artificial intelligence optimization algorithms], Nobel akademi.
  • Keser, B. (2020). Karınca kolonisi optimizasyon algoritması [Ant colony optimization algorithm]. https://medium.com/@berkekeser/kar%C4%B1nca-kolonisi-optimizasyon-algoritmas%C4%B1-4da0b37cb393
  • Khamparia, A., & Pandey, B. (2015). Knowledge and intelligent computing methods in e-learning. International Journal of Technology Enhanced Learning, 7(3), 221-242. https://doi.org/10.1504/IJTEL.2015.072810
  • Kickmeier-Rust, M. D., & Holzinger, A. (2019). Interactive ant colony optimization to support adaptation in serious games. International Journal of Serious Games, 6(3), 37-50. https://doi.org/10.17083/ijsg.v6i3.308
  • Kocabatmaz, H. (2011). The evaluation of the technology and design curriculum, [Unpublished doctoral thesis], Ankara University.
  • Lee, C. Y., Ruan, L. M., Lee, Z. J., Huang, J. Q., Yao, J., Ning, Z. Y., & Tu, J. F. (2021). Study on the university students' satisfaction of the wisdom tree massive open online course platform based on parameter optimization intelligent algorithm. Science progress, 104(3_suppl), 368504211054256. https://doi.org/10.1177/00368504211054256
  • Li, R. X. (2019). Adaptive learning model based on ant colony algorithm. International Journal of Emerging Technologies in Learning, 14(1), 49-57. https://doi.org/10.3991/ijet.v14i01.9487
  • Qiang, L., Xin, K., Yu, G., Yi, S., Liping, S., & Feixue, Y. (2017). Influence mechanism of external social capital of university teachers on evolution of generative digital learning resources of educational technology of university teachers - empirical analysis of differential evolution algorithm and structural equation model of bootstrap self-extraction technique. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 5327-5341. https://doi.org/10.12973/eurasia.2017.00985a
  • Madalina, M., & Serbanescu, L. (2016). Application software architecture for learning physics, based on ant colony optimization type mechanisms. In M. Vlada, G. Albeanu, A. Adascalitei, & M. Popovici (Eds.), Proceedings of the 11th International Conference on Virtual Learning (pp. 334-338). Proceedings of the International Conference on Virtual Learning.
  • Mohammadi, M. O. (2022). Zaman-maliyet-kalite ödünleşim problemlerinin çözümünde baskın olmayan sıralma-II öğretme-öğrenme tabanlı optimizasyon'nun (NDSII-TLBO) kullanılması [Using non-dominated sorting-II teaching learning-based optimization (NDSII-TLBO) in solving time-cost-quality trade-off problems], [Unpublished master’s thesis], Karadeniz Technical University.
  • Menai, M. E. B. Alhunitah, H., & Al-Salman, H. (2018). Swarm intelligence to solve the curriculum sequencing problem. Computer Applications in engineering Education, 26(5), 1393-1404. https://doi.org/10.1002/cae.22046
  • Niknam, M., & Thulasiraman, P. (2020). LPR: A bio-inspired intelligent learning path recommendation system based on meaningful learning theory. Education and Information Technologies, 25(5), 3797-3819. https://doi.org/10.1007/s10639-020-10133-3
  • Rao, R.V., Savsani, V.J., & Vakharia, D.P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. https://doi.org/10.1016/j.cad.2010.12.015
  • Özdemir, S.M. (2009). Curriculum evaluation in education and examination of the curriculum evaluation studies in Turkey. Van Yüzüncü Yıl University Faculty of Education Journal, 6(2), 126-149.
  • Rashid, T.A., & Ahmad, H.A. (2016). Lecturer performance system using neural network with Particle Swarm Optimization. Computer Applications in Engineering Education, 24(4), 629-638. https://doi.org/10.1002/cae.21737
  • Rastegarmoghadam, M., & Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22(3), 1067-1087. https://doi.org/10.1007/s10639-016-9472-2
  • Richards, J.C. (2003). Curriculum development in language teaching. Cambridge University Press.
  • Samigulina, G., & Samigulina, Z. (2016). Intelligent system of distance education of engineers, based on modern innovative technologies. In J. Domenech, M.C. VincentVela, R. PenaOrtiz, E. DeLaPoza, & D. Blazquez (Eds.), 2nd International Conference on Higher Education Advances, HEAD'16 (Vol. 228, ss. 229-236). https://doi.org/10.1016/j.sbspro.2016.07.034
  • Sharma, P., & Harkishan, M. (2022). Designing an intelligent tutoring system for computer programming in the Pacific. Journal of Computers in Education, 27(5), 6197-6209. https://doi.org/10.1007/s10639-021-10882-9
  • Shen, C. C., & Qi, A. L. (2020). An adaptive learning model of "Public psychology" based on creative thinking with virtual simulation technology. International Journal of Emerging Technologies in Learning, 15 (23), 131-144. https://doi.org/10.3991/ijet.v15i23.18957
  • Shukhman, A. E., Bolodurina, I. P., Polezhaev, P. N., Ushakov, Y. A., & Legashev, L. V. (2018). Adaptive technology to support talented secondary school students with the educational IT infrastructure. In Proceedings of 2018 IEEE Global Engineering Education Conference (EDUCON) - Emerging Trends and Challenges of Engineering Education (pp. 993-998). IEEE.
  • Shyr, W.J. (2010). Parameters determination for optimum design by evolutionary algorithm. Convergence and Hybrid Information Technologies. In M. Crisan (Ed.). Convergence and hybrid ınformation Technologies, https://doi.org/10.5772/9638
  • Şahin, T. (2019). Multi objective design optimızatıon of bearings using grey wolf optimization technique, [Unpublished master’s thesis]. Gazi University.
  • Uşun, S. (2012). Eğitimde Program Değerlendirme [Curriculum Evaluation in Education]. Anı Yayınları
  • Ünal, M. (2013). The evaluation of European Union Erasmus Student Mobility Programme in the framework of CIP (context, input, process, product) evaluation model, [Unpublished doctoral thesis], Gazi University.
  • Tanış, Y. (2019). Analysis of radio frequency electromagnetic waves of compact flourescent lamps using artificial immune system, [Unpublished master’s thesis], Ankara University.
  • Vuong, Q. L., Rigaut, C., & Gossuin, Y. (2018). Refraction law and Fermat principle: a project using the ant colony optimization algorithm for undergraduate students in physics. European Journal of Physics, 39(4), 045806. https://doi.org/10.1088/1361-6404/aab6e0
  • Yapıcı, M.M. (2012). Development of a timetabling software using genetic algorithm, [Unpublished master’s thesis]. Gazi University.
  • Yetkin, Y. (2019). Genetic algorithm approach to estimate PISA success, [Unpublished master’s thesis], Van Yüzüncü Yıl University.
  • Yepes, V., Gonzalez-Vidosa, F., Marti, JV., & Alcala, J. (2011). A short postgraduate course on heuristic design of prestressed concrete road bridge decks. In L.G. Chova, I.C. Torres, & A.L. Martinez (Eds.), INTED2011: 5th International Technology, Education and Development Conference, 5132-5141.
  • Yurttakal, H. (2014). Solving permutation flowshop scheduling problem by artificial immune system, [Unpublished master’s thesis], Selçuk University.
  • Yüksel, İ. (2010). Development of Turkish program evaluation standards, [Unpublished doctoral thesis], Anadolu University.
  • Wang, P. Xu, X., &Liu, C. (2019). An improved adaptive genetic algorithm and its application in intelligent course scheduling system," 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 2019, pp.. 121-125, https://doi.org/10.1109/ICISCE48695.2019.00034
  • Wang, F.R., Wang, W.H. Pan, Q.K. Zuo, F.C., & Liang, J.J. (2009a). A novel test-sheet composition approach using differential evolution algorithm for computer-aided testing systems. In C. Zhao (Ed.), ICAIE 2009: Proceedings of the 2009 International Conference on Artificial Intelligence and Education, Vols 1 and 2 (pp. 794-800).
  • Wang, F.R. Wang, W.H. Pan, Q.K., Zuo, F.C., & Liang, J.J. (2009b). A novel online test-sheet composition approach for web-based testing. In H. Liu & X.G. Zheng (Eds.), 2009 IEEE International Symposium on IT in Medicine & Education, Vols 1 and 2, Proceedings (pp. 700-+). https://doi.org/10.1109/ITIME.2009.5236331
  • Weed, M. (2005). Meta interpretation: A method for the interpretive synthesis of qualitative research. http://www.qualitative-research.net/index.php/fqs/ article/view/508/1096
  • Wong, L. H., & Looi, C. K. (2012). Swarm intelligence: new techniques for adaptive systems to provide learning support. Educational Technology Research and Development, 20(1), 19-40. https://doi.org/10.1080/10494821003714681
  • Zan, C. (2019). A distributed distribution and scheduling algorithm of educational resources based on vector space model. International Journal of Emerging Technologies in Learning, 14(4), 58-72. https://doi.org/10.3991/ijet.v14i04.10132
  • Zervoudakis, K., Mastrothanasis, K., & Tsafarakis, S. (2020). Forming automatic groups of learners using particle swarm optimization for applications of differentiated instruction. Computer Applications in Engineering Education, 28(2), 282-292. https://doi.org/10.1002/cae.22191
  • Zilinskiene, I., Dagiene, V., & Kurilovas, E. (2012). A swarm-based approach to adaptive learning: Selection of a dynamic learning scenario. In H. Beldhuis (Ed.), Proceedings of the 11th European Conference on E-Learning (pp. 583-593).
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilim, Teknoloji ve Mühendislik Eğitimi ve Programlarının Geliştirilmesi
Bölüm Makaleler
Yazarlar

Volkan Duran 0000-0003-0692-0265

Gülay Ekici 0000-0003-2418-1929

Yayımlanma Tarihi 29 Temmuz 2024
Gönderilme Tarihi 1 Nisan 2024
Kabul Tarihi 8 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Duran, V., & Ekici, G. (2024). Designing a Draft for a Metaheuristic Curriculum Evaluation Model (MCEM) Based on the Examination of Various Metaheuristic Artificial Intelligence Optimization Applications. International Journal of Turkish Education Sciences, 12(2), 989-1055. https://doi.org/10.46778/goputeb.1463058