Sistematik Derlemeler ve Meta Analiz
BibTex RIS Kaynak Göster

Kimyanın Kavramsal Profili: Kimya Eğitiminde Düşünce ve Eylemi Zenginleştirmeye Yönelik Bir Çerçeve

Yıl 2025, Cilt: 2 Sayı: 1, 1 - 21, 27.06.2025

Öz

Kimyasal düşüncelerin ve eylemlerin doğasıyla, bunların uygulamalarının ve dünyamız üzerindeki etkilerinin anlaşılması, tüm eğitim düzeylerindeki kimya eğitiminin temel hedefleri olarak dikkate alınabilir. Bununla birlikte hala, okullardaki geleneksel kimya dersleri daha çok, öğrencilerin bu alanda yıllar boyunca oluşturulmuş, bildirime dayalı bilgi yığınlarını öğrenmelerine odaklanmaktadır. Bu açıdan bakıldığında, hem kimya eğitimi programlarında hem de kimya öğrenme ortamlarında gerekli değişikliklerin yapılması, zorlu bir süreç olarak kendini göstermeye devam etmektedir. Kimya tarihi ve felsefesi üzerine yapılan çalışmalar, kimya alanının, kimya eğitimi açısından bilinmesi ve dikkate alınması gereken benzersiz özelliklere sahip olduğunu ileri sürmektedir. Bu araştırmaların birçoğu, kimyada ve kimyaya ilişkin anlayışlarda, karaterize edilmesi ve eğitim modellerimize dahil edilmesi gereken, bir çoğulluğa dikkat çekmektedir. Bu makale, tüm eğitim düzeylerindeki kimya öğretmenlerinin düşünce ve eylemlerini zenginleştirmek ve desteklemek için kullanılabilecek bir çerçeve önerebilmek adına, “kavramsal profiller teorisi”ni kullanarak, böyle bir karakterizasyon ortaya koymaya çalışmaktadır. Bu amaca yönelik olarak sunulan çalışma, bu makalenin yazarı tarafından yapılan sınırlı katkılar haricinde, Freire ve arkadaşları (2024) tarafından yayımlanmış bir araştırmanın, içeriğine sadık kalınarak özetlenmiş bir versiyonunu içermektedir ve buradaki temel öncül, kimyasal bilgi, düşünce ve eylemlerin doğasının daha iyi anlaşılmasının, öğretmenlerin, yeni geliştirilen uygulamalara katılımlarını destekleyeceğidir.

Kaynakça

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.
  • Amaral, E. M. R., & Mortimer, E. F. (2001). Uma proposta de perfil conceitual para o conceito de calor [A conceptual profile proposal for the concept of heat]. Revista Brasileira de Pesquisa em Educação em Ciências, 1(3), 5–18.
  • Amaral, E. M. R., Mortimer, E. F., & Scott, P. (2014). A conceptual profile of entropy and spontaneity: Characterising modes of thinking and ways of speaking. In E. F. Mortimer & C. N. El-Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (pp. 201–234). Dordrecht: Springer.
  • Amaral, E. M. R., Silva, J. R. R. T., & Sabino, J. D. (2018). Analysing processes of conceptualization for students in lessons on substance from the emergence of conceptual profiles zones. Chemistry Education Research and Practice, 19(4), 1010–1028.
  • Bachelard, G. (1932). Le pluralisme cohérent de la chimie moderne [The Coherent Pluralism of Modern Chemistry]. Paris: Vrin.
  • Bachelard, G. (1968). The philosophy of no. New York, NY: The Orion Press.
  • Baird, D., Scerri, E., & McIntyre, L. (2006). Philosophy of chemistry: Synthesis of a new discipline. Dordrecht: Springer.
  • Barke, H. D., Hazri, A., & Yitbarek, S. (2008). Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin: Springer Verlag.
  • Bensaude-Vincent, B. (2009). The chemists’ style of thinking. Ber Wissenschaftsgesch, 32(4), 365– 378.
  • Bensaude-Vincent, B., & Simon, J. (2008). Chemistry: The impure science. London: Imperial College Press.
  • Bulte, A. M. W., Westbroek, H. B., De Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(10), 1063–1086.
  • Chamizo, J. A. (2013). Technochemistry: One of the chemists’ ways of knowing. Foundations of Chemistry, 15(2), 157–170.
  • Chamizo, J. A. (2014). The role of instruments in three chemical’ revolutions. Science & Education, 23(4), 955–982. Cooper, M., & Klymkowsky, M. (2013). Chemistry, life, the universe, and everything: A new approach to general chemistry, and a model for curriculum reform. Journal of Chemical Education, 90(9), 1116–1122.
  • Cooper, M. M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating students’ reasoning about acid–base reactions. Journal of Chemical Education, 93(10), 1703–1712. Cooper, M. M., Posey, L. A., & Underwood, S. M. (2017). Core ideas and topics: Building up or drilling down? Journal of Chemical Education, 94(5), 541–548.
  • Cooper, M. M., Stieff, M., & De Sutter, D. (2017). Sketching the invisible to predict the visible: From drawing to modeling in chemistry. Topics in Cognitive Science, 9(4), 902–920.
  • Coutinho, F. A., El-Hani, C. N., & Mortimer, E. F. (2014). Building a profile for the biological concept of life. In E. F. Mortimer & C. N. El-Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (pp. 115–142). Dordrecht: Springer.
  • Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education: Why does it matter? Science & Education, 25(1), 147–164. Department of Education (DOE). (2016). STEM 2026: A vision for innovation in STEM education. Washington, DC: US Department of Education.
  • Earley, J. E. (2004). Would introductory chemistry courses work better with a new philosophical basis? Foundations of Chemistry, 6(3), 137–160.
  • Earley, J. E. (2006). Some philosophical influences on Ilya Prigogine’s statistical mechanics. Foundations of Chemistry, 8(3), 271–283.
  • Eilks, I., Rauch, F., Ralle, B., & Holfstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks & A. Holfstein (Eds.), Teaching chemistry – A study book: A practical guide and textbook for student teachers, teacher trainees and teachers (pp. 1–36). Rotterdam: Sense Publishers.
  • Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & Education, 10(6), 581–593.
  • Erduran, S. (2005). Applying the philosophical concept of reduction to the chemistry of water: Implications for chemical education. Science & Education, 14(2), 161–171.
  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263.
  • Erduran, S. (2009). Beyond philosophical confusion: Establishing the role of philosophy of chemistry in chemical education research. Journal of Baltic Science Education, 8(1), 5–14.
  • Erduran, S., Bravo, A. A., & Naaman, R. M. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16, 975–989.
  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterization of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105–138.
  • Erduran, S., & Mugaloglu, E. (2013). Interactions of economics of science and science education: Investigating the implications for science teaching and learning. Science & Education, 22(10), 2405–2425.
  • Erduran, S., & Scerri, E. (2002). The nature of chemical knowledge and chemical education. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical education: Towards research-based practice (pp. 7–27). Dordrecht: Kluwer.
  • Freire, M. S. (2017). Perfil conceitual de Química: Contribuições para uma análise da natureza da química e do seu ensino [Conceptual Profile of Chemistry: Contributions for an analysis of Nature of Chemistry and Chemistry Education] (Doctoral dissertation). Universidade Federal Rural de Pernambuco, Recife, Brazil.
  • Freire, M. S., & Amaral, E. M. R. (2018). Analyzing conceptions on chemistry: Proposal for a conceptual Freire, M., Vicente Talanquer, V., & Amaral, E. (2019). Conceptual profile of chemistry: a framework for Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education. The Netherlands: Springer.
  • Hoffmann, R. (1995). The same and not the same. New York, NY: Columbia University Press. Hoffmann, R., & Laszlo, P. (1991). Representation in chemistry. Angewandte Chemie, 30(1), 1–16. Izquierdo-Aymerich, M. (2013). School chemistry: An historical and philosophical approach. Science & Education, 22(7), 1633–1653.
  • Jensen, W. B. (1998). Logic, history, and the chemistry textbook. I. Does chemistry have a logical structure? Journal of Chemical Education, 75(6), 679–687.
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom like they seem. Journal of Computer Assisted Learning, 7(2), 75–83.
  • Justi, R., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.
  • Kidenemariam, D. A., Atagana, H. I., & Engida, T. (2013). The place of philosophy of chemistry in reducing chemical misconceptions. African Journal of Chemical Education, 3(2), 106–117.
  • Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas (2nd ed.). London: Royal Society of Chemistry.
  • Knight, D. (1992). Ideas in chemistry: A history of the science. London: The Athlone Press.
  • Kraft, A., Strickland, A. M., & Bhattacharyya, G. (2010). Reasonable reasoning: Multi-variate problem-solving in organic chemistry. Chemistry Education Research and Practice, 11(4), 281– 292.
  • Laszlo, P. (1999). Circulation of concepts. Foundations of Chemistry, 1(3), 225–238.
  • Laszlo, P. (2006). On the self-image of chemists, 1950–2000. HYLE: International Journal for Philosophy of Chemistry, 12(1), 99–130.
  • Lombardi, O., & Labarca, M. (2007). The philosophy of chemistry as a new resource for chemistry education. Journal of Chemical Education, 84(1), 187–192.
  • Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education: Research and Practice, 5(3), 229–245.
  • Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4(3), 267–285.
  • Mortimer, E. F. (2000). Linguagem e Formação de Conceitos no Ensino de Ciências. [language and Formations of concepts in science education]. Belo Horizonte: Editora da UFMG.
  • Mortimer, E. F., & Amaral, L. O. F. (2014). Contributions of the sociocultural domain to build a conceptual profile model for molecule and molecular structure. In E. F. Mortimer & C. N. El- Hani (Eds.), Conceptual profiles: A theory of teaching and learning scientific concepts (pp. 103–114). Dordrecht: Springer.
  • Mortimer, E. F., & El-Hani, C. N. (2014). Conceptual profiles: A theory of teaching and learning scientific concepts. Dordrecht: Springer.
  • Mortimer, E. F., & Scott, P. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.
  • Müürsepp, P. (2016). Chemistry as a practical science (Edward Caldin Revisited). Foundations of Chemistry, 18(2), 113–123.
  • National Research Council (NRC). (2013). The next generation science standards. Washington, DC: National Academy Press.
  • Read, J. (1995). From Alchemy to chemistry. New York: Dover.
  • Ribeiro, M. A. P., & Pereira, D. C. (2013). Constitutive pluralism of chemistry: Thought planning, curriculum, epistemological and didactic orientations. Science & Education, 22(7), 1809–1837.
  • Rozin, P. (2005). The meaning of natural. Psychological Science, 16(8), 652–658.
  • Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525.
  • Salta, K., & Tzougraki, C. (2004). Attitudes toward chemistry among 11th grade students in high schools in Greece. Science Education, 88(4), 535–547.
  • Scerri, E., & McIntyre, L. (1997). The case for the philosophy of chemistry. Synthese, 111(3), 213–232.
  • Schummer, J. (1997). Scientometric studies on chemistry I: The exponential growth of chemical substances, 1800–1995. Scientometrics, 39(1), 107–123.
  • Schummer, J. (1998). The chemical core of chemistry, I: A conceptual approach. HYLE: International Journal for Philosophy of Chemistry, 4(2), 129–162.
  • Schummer, J. (1999). Coping with the growth of chemical knowledge – challenges for chemistry documentation, education, and working chemists. Educación Química, 10(1), 92–101.
  • Schummer, J. (2014). The methodological pluralism of chemistry and its philosophical implications. In E. Scerri & L. McIntyre (Eds.), Philosophy of chemistry: Review a current discipline (pp. 57–72). Dordrecht: Springer.
  • Schummer, J., Bensaude-Vincent, B., & Tiggelen, V. (2007). The public image of chemistry. Singapore: World Scientific.
  • Silva, J. R. R. T., & Amaral, E. M. R. (2013). Proposta de um perfil conceitual para substância [Proposal of a conceptual profile for substance]. Revista Brasileira de Pesquisa em Educação em Ciências, 13(3), 53–72.
  • Sjöström, J. (2006). Beyond classical chemistry: Subfields and metafields of the molecular sciences. Chemistry International, 28, 9–15.
  • Sjöström, J. (2007). The discourse of chemistry (and beyond). HYLE: International Journal for Philosophy of Chemistry, 13(2), 83–97.
  • Sjöström, J. (2013). Towards Bildung-oriented chemistry education. Science & Education, 22(7), 1873–1890.
  • Sjöström, J., Eilks, I., & Zuin, V. G. (2016). Towards eco-reflexive science education. Science & Education, 25, 321–341.
  • Sjöström, J., & Talanquer, V. (2014). Humanizing chemistry education: From simple contextualization to multifaceted problematization. Journal of Chemical Education, 91(8), 1125–1131.
  • Solsona, N., Izquierdo, M., & De Jong, O. (2003). Exploring the development of students’ conceptual profiles of chemical change. International Journal of Science Education, 25(1), 3–12.
  • Stein, R. L. (2004). Towards a process philosophy of chemistry. HYLE: International Journal for Philosophy of Chemistry, 10(1), 5–22.
  • Taber, K. S. (2002). Chemical misconceptions—prevention, diagnosis and cure: Vol. I: Theoretical background. London: Royal Society of Chemistry.
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 75–108). Dordrecht: Springer.
  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168.
  • Taber, K. S., & García-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. The Journal of the Learning Sciences, 19(1), 99–142.
  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–816.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179–195.
  • Talanquer, V. (2013a). School chemistry: The need for transgression. Science & Education, 22(7), 1757–1773.
  • Talanquer, V. (2013b). Chemistry education: Ten facets to shape us. Journal of Chemical Education, 90, 832–838.
  • Talanquer, V. (2014). Chemistry education: Ten heuristics to tame. Journal of Chemical Education, 91(8), 1091–1097.
  • Talanquer, V. (2016). Central ideas in chemistry: An alternative perspective. Journal of Chemical Education, 93(1), 3–8.
  • Talanquer, V. (2018). Chemical rationales: Another triplet for chemical thinking. International Journal of Science Education, 40(15), 1874–1890.
  • Talanquer, V., & Pollard, J. (2010). Let’s teach how we think instead of what we know. Chemistry Education Research and Practice, 11, 74–83.
  • Tulviste, P. (1991). Cultural-historical development of verbal thinking: A psychological study. Commack, NY: Nova Science Publishers.
  • Van Brakel, J. (1997). Chemistry as the science of the transformation of substances. Synthese, 111(3), 253–282.
  • Van Brakel, J. (2006). The philosophy of chemistry: From infancy toward maturity. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline (pp. 19–39). Dordrecht: Kluwer.
  • Vilches, A., & Gil-Pérez, D. (2013). Creating a sustainable future: Some philosophical and educational considerations for chemistry teaching. Science & Education, 22(7), 1857–1872.
  • Weingart, P. (2006). Chemists and their craft in fiction film. Hyle – International Journal for Philosophy of Chemistry, 12(1), 31–44.
  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Eğitimi
Bölüm Sistematik Derlemeler ve Meta Analiz
Yazarlar

Tacettin Pınarbaşı 0000-0003-2153-248X

Gönderilme Tarihi 26 Şubat 2025
Kabul Tarihi 21 Haziran 2025
Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 1

Kaynak Göster

APA Pınarbaşı, T. (2025). Kimyanın Kavramsal Profili: Kimya Eğitiminde Düşünce ve Eylemi Zenginleştirmeye Yönelik Bir Çerçeve. Giresun Üniversitesi Eğitim Fakültesi Dergisi, 2(1), 1-21.

Giresun Üniversitesi Eğitim Fakültesi Dergisi (Giresun University Journal of Faculty of Education)