Derleme
BibTex RIS Kaynak Göster

Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler

Yıl 2020, Cilt: 1 Sayı: 1-2, 36 - 50, 30.12.2020
https://doi.org/10.5281/zenodo.4317954

Öz

Neurodegenerative disorders are results of structural and functional dysfunction of the nervous system.
Although there are several therapeutic approaches for these diseases, these approaches cannot be
effective in pathological processes and are applied only palliative. For this reason, new compounds for
neurodegenerative diseases are crucial. Calcium (Ca2+) which acts as a second messenger, is required
for neuronal activity as well as for many biological activities. The pivotal role of Ca2+ homeostasis has
long been recognized in hypertension and cardiovascular disease. Ca2+ channel blockers have been
commonly prescribed for treatment of the hypertension and cardiovascular diseases because of their
mechanism of action due to reducing the influx of Ca2+
. Disruptions in the intracellular Ca2+ homeostasis
play a central role in the pathophysiology of neurodegenerative diseases such as Alzheimer and
Parkinson. Channel blockers may be effective in neurodegenerative diseases. In this review, we aimed to
review the relationship between the metabolism of neurodegenerative diseases and Ca2+ dyshomeostasis
and to reveal natural compounds, which have therapeutic effects in neurodegenerative diseases, with
modulation of Ca2+ homeostasis. Evolution of their potentials for drug candidates represents an important
step for the prevention of neurodegeneration and for molecular mechanisms of Ca2+ homeostasis
disorders.

Kaynakça

  • [1] Hussain, G., Rasul, A., Anwar, H., Aziz, N., Razzaq, A., Wei, W., et al. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. International Journal of Biological Sciences, 14(3), 341– 357.
  • [2] Hussain, R., Zubair, H., Pursell, S., and Shahab, M. (2018). Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches. Brain Sciences, 8(9), 177–214.
  • [3] Yurtkap, O. and Arslan, B. (2018). Axonal transport in neurodegenerative diseases. The Journal of Neurobehavioral Sciences, 5 (2), 115–123.
  • [4] Finberg, J. P. M. (2010). Pharmacology of rasagiline, a new mao-b inhibitor drug for the treatment of parkinson’s disease with neuroprotective potential. Rambam Maimonides Medical Journal, 1(1), e0003.
  • [5] Korabecny, J., Zemek, F., Soukup, O., Spilovska, K., Musilek, K., Jun, D., and Kuca, K. (2014). Pharmacotherapy of Alzheimer’s disease: current state and future perspectives. Drug Design and Discovery in Alzheimer's Disease. Elsevier, 3–39.
  • [6] Durães, F., Pinto, M., and Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals, 11(2), 1–21.
  • [7] Girdhar, S., Girdhar, A., Verma, S. K., Lather, V., Pandita, D., Ji, H. F., et al. (2015). Plant derived alkaloids in major neurodegenerative diseases : from animal models to clinical trials. Journal of Ayurvedic and Herbal Medicine, 1(3), 91–100.
  • [8] Selkoe, D. J. (2019). Alzheimer disease and aducanumab: adjusting our approach. Nature Reviews Neurology, 15(7), 365–366.
  • [9] Yacoubian, T. A. (2017). Neurodegenerative disorders: Why do we need new therapies? Drug discovery approaches for the treatment of neurodegenerative disorders. Academic Press., 1-16.
  • [10] Numakawa, T., Matsumoto, T., Numakawa, Y., Richards, M., Yamawaki, S., and Kunugi, H. (2011). Protective action of neurotrophic factors and estrogen against oxidative stress-mediated neurodegeneration. Journal of Toxicology, 2011(405194), 12.
  • [11] Zündorf, G. and Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants and Redox Signaling, 14(7), 1275–1288.
  • [12] Wu, C. L. and Wen, S. H. (2016). A 10-year follow-up study of the association between calcium channel blocker use and the risk of dementia in elderly hypertensive patients. Medicine (United States), 95(32), 4593.
  • [13] Schrank, S., Barrington, N., and Stutzmann, G. E. (2020). Calcium-handling defects and neurodegenerative disease. Cold Spring Harbor Perspectives in Biology, 12(7), 1–25.
  • [14] Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J., et al. (2015). Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 134, 36–54.
  • [15] Reid, I. R., Bristow, S. M., and Bolland, M. J. (2017). Calcium and cardiovascular disease. Endocrinology and Metabolism, 32(3), 339–349.
  • [16] Benaim, G. and Garcia, C. R. S. (2011). Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis - a review. Tropical Biomedicine, 28(3), 471–481.
  • [17] Tatar, M. and Tatar, T. (2018). Endoplazmik retikulum stresi ve ilişkili hastalıklar. Osmangazi Journal of Medicine, 294–303.
  • [18] Verne, J. (2019). Ca2+ channels in cancer. Cell Calcium, 84, 102083.
  • [19] Dong, Z., Saikumar, P., Weinberg, J. M., and Venkatachalam, M. A. (2006). Calcium in cell ınjury and death. Annual Review of Pathology: Mechanisms of Disease, 405–434.
  • [20] Gerasimenko, J. V., Peng, S., Tsugorka, T., and Gerasimenko, O. V. (2018). Ca2+ signalling underlying pancreatitis. Cell Calcium, 70, 95–101.
  • [21] Oliveira, A. M. M., Bading, H., and Mauceri, D. (2014). Dysfunction of neuronal calcium signaling in aging and disease. Cell and Tissue Research, 357 (2), 381–383.
  • [22] Veldurthy, V., Wei, R., Oz, L., Dhawan, P., Jeon, Y. H., and Christakos, S. (2016). Vitamin D, calcium homeostasis and aging. Bone Research, 4(August), 1–7.
  • [23] Bagur, R. and Hajnóczky, G. (2017). Intracellular Ca2+ Sensing: Its role in calcium homeostasis and signaling. Molecular Cell, 66(6), 780–788.
  • [24] Carmeliet, G., Van Cromphaut, S., Daci, E., Maes, C., and Bouillon, R. (2003). Disorders of calcium homeostasis. Best Practice and Research: Clinical Endocrinology and Metabolism, 17(4), 529–546.
  • [25] Kumar, P., Kumar, D., Jha, S. K., Jha, N. K., and Ambasta, R. K. (2016). Ion Channels in Neurological Disorders. Advances in protein chemistry and structural biology (1st ed.) Elsevier Inc., 97-136.
  • [26] Steinlein, O. K. (2014). Calcium signaling and epilepsy. Cell and Tissue Research, 357(2), 385–393.
  • [27] Ermak, G. and Davies, K. J. A. (2002). Calcium and oxidative stress: From cell signaling to cell death. Molecular Immunology, 38(10), 713–721.
  • [28] Gürer, R. (2005). İdiopatik parkinson hastalığı etyopatogenezinde seruloplazminin yeri ve proton mr spektroskopi ile verifikasyonu. T.C. Sağlık Bakanlığı Göztepe Eğitim ve Araştırma Hastanesi, 2005.
  • [29] Kuchibhotla, K. V., Goldman, S. T., Lattarulo, C. R., Wu, H. Y., Hyman, B. T., and Bacskai, B. J. (2008). Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron, 59(2), 214–225.
  • [30] Alzheimer’s Association Calcium Hypothesis Workgroup (2017). Calcium Hypothesis of Alzheimer’s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 13(2), 178-182.e17.
  • [31] Anekonda, T. S. and Quinn, J. F. (2011). Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: The case for isradipine. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812 (12), 1584–1590.
  • [32] Bezprozvanny, I. (2009). Calcium signaling and neurodegenerative diseases. Trends in Molecular Medicine, 15(3), 89–100.
  • [33] Tan, Y., Deng, Y., and Qing, H. (2012). Calcium channel blockers and Alzheimer’s disease. Neural Regeneration Research, 7 (2), 137–140.
  • [34] Zuo, L., Hemmelgarn, B. T., Chuang, C. C., and Best, T. M. (2015). The role of oxidative stress-induced epigenetic alterations in amyloid-β production in alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2015.
  • [35] Galas, M. C., Dourlen, P., Bégard, S., Ando, K., Blum, D., Hamdane, M., et al. (2006). The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons: Implication in a pathological mechanism related to Alzheimer disease. Journal of Biological Chemistry, 281(28), 19296–19304.
  • [36] Poppek, D., Keck, S., Ermak, G., Jung, T., Stolzing, A., Ullrich, O., et al. (2006). Phosphorylation inhibits turnover of the tau protein by the proteasome: Influence of RCAN1 and oxidative stress. Biochemical Journal, 400(3), 511–520.
  • [37] Sierra, H., Cordova, M., Chen, C. S. J., and Rajadhyaksha, M. (2015). Calcium dyshomeostasis and pathological calcium signalling in neurological diseases. Journal of Investigative Dermatology, 135 (2), 612–615.
  • [38] Zaichick, S. V., McGrath, K. M., and Caraveo, G. (2017). The role of Ca2+ signaling in Parkinson’s disease. DMM Disease Models and Mechanisms, 10 (5), 519–535.
  • [39] Calì, T., Ottolini, D., and Brini, M. (2014). Calcium signaling in Parkinson’s disease. Cell and Tissue Research, 357(2), 439–454.
  • [40] Emre, M. (2018). Voltaj kapılı kalsiyum kanalları ve moleküller özellikleri. Arşiv Kaynak Tarama Dergisi, 27(1), 1–17.
  • [41] Nimmrich, V. and Eckert, A. (2013). Calcium channel blockers and dementia. British Journal of Pharmacology, 169(6), 1203–1210.
  • [42] Lacınova, L. (2005). Voltage-dependent calcium channels. General Physiology and Biophysics, 24, 1–78.
  • [43] Hughes, A. (2017). Calcium channel blockers. in: Hypertens. A Companion to Braunwald’s Hear. Dis., pp. 242–253.
  • [44] Godfraind, T. (2017). Discovery and development of calcium channel blockers. Frontiers in Pharmacology, 8(May), 1–25.
  • [45] İnternet: Bethesda (MD). Calcium Channel Blockers, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury,. URL: https://www.ncbi.nlm.nih.gov/books/NBK548577/, Son Erişim Tarihi: 20.06.2020
  • [46] Baydın, A., Yardan, T., Dilek, A., Nural, M.S., Eden, A.O. ve Gönüllü, H. (2008). Yüksek dozda kalsiyum kanal blokeri alımına bağlı ölüm olgusu ve literatürün gözden geçirilmesi. Türkiye Acı̇l Tıp Dergı̇sı̇, 8(2), 84–89.
  • [47] Polat, M. ve Uzun, Ö. (2013). Deri hastalıklarında kalsiyum kanal blokerlerinin kullanımı. Türkderm Deri Hastalıkları ve Frengi Arşivi, 47(2), 75–79.
  • [48] Alam, S., Lingenfelter, K. S., Bender, A. M., and Lindsley, C. W. (2017). Classics in chemical neuroscience: Memantine. ACS Chemical Neuroscience, 8(9), 1823–1829.
  • [49] Liang, L. and Wei, H. (2015). Dantrolene, a treatment for Alzheimer disease? Alzheimer Disease and Associated Disorders, 29(1), 1–5.
  • [50] Alés, E., Gullo, F., Arias, E., Olivares, R., García, A. G., Wanke, E., et al. (2006). Blockade of Ca2+ -activated K+ channels by galantamine can also contribute to the potentiation of catecholamine secretion from chromaffin cells. European Journal of Pharmacology, 548(1–3), 45–52.
  • [51] Haraguchi, Y., Mizoguchi, Y., Ohgidani, M., Imamura, Y., Murakawa-Hirachi, T., Nabeta, H., et al. (2017). Donepezil suppresses intracellular Ca2+ mobilization through the PI3K pathway in rodent microglia. Journal of Neuroinflammation, 14(1), 1–14.
  • [52] Solntseva, E. I., Bukanova, J. V., Marchenko, E., and Skrebitsky, V. G. (2007). Donepezil is a strong antagonist of voltage-gated calcium and potassium channels in molluscan neurons. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 144(4), 319–326.
  • [53] Graham, W. V., Bonito-Oliva, A., and Sakmar, T. P. (2017). Update on Alzheimer’s disease therapy and prevention strategies. Annual Review of Medicine, 68 (1), 413–430.
  • [54] İnternet: Trial of Carvedilol in Alzheimer’s Disease - Study Results - ClinicalTrials.gov. URL: https://clinicaltrials.gov/ct2/show/results/NCT01354444?term=calcium+channel+blocker&recrs=e&co nd=Neurodegenerative+Diseases&phase=23&draw=2&rank=3&view=results, Son Erişim Tarihi: 20.06.2020
  • [55] İnternet: Search of: calcium channel blocker | Neuro-Degenerative Disease- List ResultsClinicalTrials.gov.https://clinicaltrials.gov/ct2/results?cond=NeuroDegenerative+Disease&term=calcium+channel+blocker&cntry=&state=&city=&dist=, Son Erişim Tarihi: 20.07.2020
  • [56] King, G. F. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11), 1469–1484.
  • [57] Bajaj, S. and Han, J. (2019). Venom-derived peptide modulators of cation-selective channels: Friend, foe or frenemy. Frontiers in Pharmacology, 10, 1–12.
  • [58] Sousa, S. R., Vetter, I., and Lewis, R. J. (2013). Venom peptides as a rich source of Cav2.2 channel blockers. Toxins, 5(2), 286–314.
  • [59] Ellinor, P. T., Zhang, J. F., Horne, W. A., and Tsien, R. W. (1994). Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature, 372(6503), 272–275.
  • [60] McDonough, S. I., Swartz, K. J., Mintz, I. M., Boland, L. M., and Bean, B. P. (1996). Inhibition of calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC. Journal of Neuroscience, 16(8), 2612– 2623.
  • [61] Pringle, A., Benham, C., Sim, L., Kennedy, J., Iannotti, F., and Sundstrom, L. (1996). Selective N-type calcium channel antagonist omega conotoxin MVIIA is neuroprotective against hypoxic neurodegeneration in organotypic hippocampal-slice cultures. Stroke A Journal of Cerebral Circulation, 27(11), 2124–2130.
  • [62] Asakura, K., Matsuo, Y., Kanemasa, T., and Ninomiya, M. (1997). P/Q-type Ca2+ channel blocker ω-agatoxin IVA protects against brain injury after focal ischemia in rats. Brain Research, 776(1–2), 140–145.
  • [63] Ramsden, M., Henderson, Z., and Pearson, H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid β protein (1-40) is dependent on solubility status. Brain Research, 956(2), 254–261.
  • [64] de Souza, J. M., Goncalves, B. D. C., Gomez, M. V., Vieira, L. B., and Ribeiro, F. M. (2018). Animal toxins as therapeutic tools to treat neurodegenerative diseases. Frontiers in Pharmacology, 9, 1–25.
  • [65] Zamponi, G. W., Striessnig, J., Koschak, A., and Dolphin, A. C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological Reviews, 67(4), 821–870.
  • [66] Stotz, S. C., Spaetgens, R. L., and Zamponi, G. W. (2000). Block of voltage-dependent calcium channel by the green mamba toxin calcicludine. Journal of Membrane Biology, 174(2), 157–165.
  • [67] Leão, R. M., Cruz, J. S., Diniz, C. R., Cordeiro, M. N., and Beirão, P. S. L. (2000). Inhibition of neuronal high-voltage activated calcium channels by the ω-Phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology, 39(10), 1756–1767.
  • [68] Motin, L., Yasuda, T., Schroeder, C. I., Lewis, R. J., and Adams, D. J. (2007). ω-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. European Journal of Neuroscience, 25(2), 435–444.
  • [69] Yan, L. and Adams, M. E. (2000). The spider toxin ω-Aga IIIA defines a high affinity site neuronal high voltage-activated calcium channels. Journal of Biological Chemistry, 275(28), 21309–21316.
  • [70] Sutton, K. G., Siok, C., Stea, A., Zamponi, G. W., Heck, S. D., Volkmann, R. A., et al. (1998). Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Molecular Pharmacology, 54(2), 407–418.
  • [71] Dos Santos, R. G., Van Renterghem, C., Martin-Moutot, N., Mansuelle, P., Cordeiro, M. N., Diniz, C. R., et al. (2002). Phoneutria nigriventer ω-phonetoxin IIA blocks the Cav2 family of calcium channels and interacts with ω-conotoxin-binding sites. Journal of Biological Chemistry, 277(16), 13856–13862.
  • [72] Bladen, C., Hamid, J., Souza, I. A., and Zamponi, G. W. (2014). Block of T-type calcium channels by protoxins i and II. Molecular Brain, 7(1), 1–8.
  • [73] Wen, L., Yang, S., Zhou, W., Zhang, Y., and Huang, P. (2006). New conotoxin SO-3 targeting N-type voltagesensitive calcium channels. Marine Drugs, 4(3), 215–227.
  • [74] Alaoui, C. El, Choukairi, Z., Lamri, L., Berrada, F., and Taoufiq, F. (2015). Inhibition of voltage-gated calcium channels by natural alkaloids: Pharmacological and therapeutic effects. International Journal of Science and Research (IJSR), 4(9), 1289–1294.
  • [75] Amirkia, V. and Heinrich, M. (2014). Alkaloids as drug leads - A predictive structural and biodiversity-based analysis. Phytochemistry Letters, 10 (October), xlviii–liiii.
  • [76] Splettstoesser, F., Bonnet, U., Wiemann, M., Bingmann, D., and Büsselberg, D. (2005). Modulation of voltage-gated channel currents by harmaline and harmane. British Journal of Pharmacology, 144 (1), 52–58.
  • [77] Fu, Y.-C., Zhang, Y., Tian, L.-Y., Li, N., Chen, X., Cai, Z.-Q., et al. (2016). Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium. Journal of Geriatric Cardiology: JGC, 13(4), 316–25.
  • [78] McCawley, E. L. (1955) Cardioactive Alkaloids. Alkaloids Chem. Physiol. Academic Press, 79–107.
  • [79] Vacek, J., Walterová, D., Vrublová, E., and Šimánek, V. (2010). The chemical and biological properties of protopine and allocryptopine. Heterocycles, 81 (8), 1773–1789.
  • [80] Matsumoto, K., Yamamoto, L. T., Watanabe, K., Yano, S., Shan, J., Pang, P. K. T., et al. (2005). Inhibitory effect of mitragynine, an analgesic alkaloid from Thai herbal medicine, on neurogenic contraction of the vas deferens. Life Sciences, 78(2), 187–194.
  • [81] Bickmeyer, U. and Wiegand, H. (1993). Tetrandrine effects on calcium currents in cultured neurones of foetal mice. NeuroReport, 4(7), 938–940.
  • [82] Gibbons, S. and Arunotayanun, W. (2013). Natural product (fungal and herbal) novel psychoactive substances. Novel Psychoactive Substances. Elsevier Inc., 345–362.
  • [83] Hazim, A. I., Mustapha, M., and Mansor, S. M. (2011). The effects on motor behaviour and short-term memory tasks in mice following an acute administration of mitragyna speciosa alkaloid extract and mitragynine. Journal of Medicinal Plant Research, 5(24), 5810–5817.
  • [84] Dey, A. and Mukherjee, A. (2017). Plant-derived alkaloids: A promising window for neuroprotective drug discovery. Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier Inc., 237–320.
  • [85] Moloudizargari, M., Mikaili, P., Aghajanshakeri, S., Asghari, M., and Shayegh, J. (2013). Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacognosy Reviews, 7(14), 199–212.
  • [86] Dai, J. and Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352.
  • [87] Scholz, E. P., Zitron, E., Katus, H. A., and Karle, C. A. (2010). Cardiovascular ion channels as a molecular target of flavonoids. Cardiovascular Therapeutics, 28(4), 46–52.
  • [88] Lu, C., Lin, T., Huang, S., and Wang, S. (2016). Echinacoside inhibits glutamate release by suppressing voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals. International Journal of Molecular Sciences, 17(7), 1006.
  • [89] Chang, Y., Chang, C. Y., Wang, S. J., and Huang, S. K. (2015). Myricetin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Journal of Medicinal Food, 18(5), 516–523.
  • [90] Ara Gulshan , Afzal Mohammad, Jyoti Smita, S. Y. H. (2020). Effect of myricetin on the oxidative stress markers in the brain of transgenic flies expressing human alpha-synuclein. International Journal of Nutrition, Pharmacology, Neurological Diseases, 8, 41–46.
  • [91] Liu, J., Yang, L., Dong, Y., Zhang, B., and Ma, X. (2018). Echinacoside, an ınestimable natural product in treatment of neurological and other disorders. Molecules, 23(5), 1–23.
  • [92] Joshi, V., Mishra, R., Upadhyay, A., Amanullah, A., Poluri, K. M., Singh, S., et al. (2019). Polyphenolic flavonoid (Myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation. Journal of Cellular Physiology, 234(11), 20900–20914.
  • [93] Shimmyo, Y., Kihara, T., Akaike, A., Niidome, T., and Sugimoto, H. (2008). Multifunction of myricetin on A: Neuroprotection via a conformational change ofab and reduction ofab via the interference of secretases. Journal of Neuroscience Research, 86(2), 368--377.
  • [94] Yi, Y. S. (2019). Roles of ginsenosides in inflammasome activation. Journal of Ginseng Research, 43(2), 172–178.
  • [95] Özer, E. Ö., Tan, O. U., and Turkoglu, S. (2020). The structural diversity of ginsenosides affects their cholinesterase inhibitory potential. Turkish Journal of Biochemistry, 45(2),1-9.
  • [96] Biswas, T., Mathur, A. K., and Mathur, A. (2017). A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Applied Microbiology and Biotechnology, 101(10), 4009–4032.
  • [97] Cao, X., Ye, Q., Fan, M., and Liu, C. (2019). Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms. 126(3), 740-751.
  • [98] Lin, Z. Y., Chen, L. M., Zhang, J., Pan, X. D., Zhu, Y. G., Ye, Q. Y., et al. (2012). Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons. Acta Pharmacologica Sinica, 33(4), 438–444.
  • [99] Nah, S. Y., Park, H. J., and McCleskey, E. W. (1995). A trace component of ginseng that inhibits Ca2+ channels through a pertussis toxin-sensitive G protein. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8739–8743.
  • [100] Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., et al. (2006). Effects of ginsenosides and their metabolites on voltage-dependent Ca2+ channel subtypes. Molecules and Cells, 21(1), 52–62.
  • [101] Rausch, W. D., Liu, S., Gille, G., and Radad, K. (2006). Neuroprotective effects of ginsenosides. Acta Neurobiologiae Experimentalis, 66(4), 369–375.
  • [102] Zheng, M., Xin, Y., Li, Y., Xu, F., Xi, X., Guo, H., et al. (2018). Ginsenosides: A potential neuroprotective agent. BioMed Research International, 2018,1-11.
  • [103] Hostettmann, K., Wolfender, J.-L., and Terreaux, C. (2001). Modern screening techniques for plant extracts. Pharmaceutical Biology, 39(sup1), 18–32.
  • [104] Zare, L., Esmaeili-Mahani, S., Abbasnejad, M., Rasoulian, B., Sheibani, V., Sahraei, H., et al. (2012). Oleuropein, chief constituent of olive leaf extract, prevents the development of morphine antinociceptive tolerance through inhibition of morphine-induced l-type calcium channel overexpression. Phytotherapy Research, 26(11), 1731–1737.
  • [105] Schuwald, A. M., Nöldner, M., Wilmes, T., Klugbauer, N., Leuner, K., and Müller, W. E. (2013). Lavender Oil-Potent Anxiolytic Properties via Modulating Voltage Dependent Calcium Channels. PLoS ONE, 8(4), 1–9.
  • [106] Dong, F., Jiang, H.-H., Yang, L., Gong, Y., Zi, C.-T., Yang, D., et al. (2018). Valepotriates from the roots and rhizomes of valeriana jatamansi jones as novel N-type calcium channel antagonists. Frontiers in Pharmacology, 9, 1–9.
  • [107] Xu, B., Fu, Y., Liu, L., Lin, K., Zhao, X., Zhang, Y., et al. (2015). Effect of α -Allocryptopine on delayed afterdepolarizations and triggered activities in mice cardiomyocytes treated with ısoproterenol. Evidence-Based Complementary and Alternative Medicine, 2015, 1-9.
  • [108] Medeiros, M. A. A., Pinho, J. F., De-Lira, D. P., Barbosa-Filho, J. M., Araújo, D. A. M., Cortes, S. F., et al. (2011). Curine, a bisbenzylisoquinoline alkaloid, blocks L-type Ca2+ channels and decreases intracellular Ca2+ transients in A7r5 cells. European Journal of Pharmacology, 669(1–3), 100–107.
  • [109] Liu, K., Gui, B., Sun, Y., Shi, N., Gu, Z., Zhang, T., and Sun, X. (2013). Inhibition of L-type Ca2+ channels by curcumin requires a novel protein kinase-theta isoform in rat hippocampal neurons. Cell Calcium, 53(3), 195- 203.
  • [110] Roghani, M., Baluchnejadmojarad, T., and Roghani, F. (2006). The Involvement of L-type voltage-operated calcium channels in the vascular effect of quercetin in male rats. Iranian Journal of Pharmaceutical Research, 5(3), 199–202.
  • [111] Chang, G. J., Chang, C. J., Chen, W. J., Yeh, Y. H., and Lee, H. Y. (2013). Electrophysiological and mechanical effects of caffeic acid phenethyl ester, a novel cardioprotective agent with antiarrhythmic activity, in guinea-pig heart. European Journal of Pharmacology, 702(1–3), 194–207.
  • [112] Lu, C., Sun, Z., and Wang, L. (2015). Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes. Journal of Ginseng Research, 39(2), 169–177.
  • [113] Bai, C. X., Takahashi, C., Masumiya, H., Sawanobori, T., and Furukawa, T. (2004). Nitric oxide-dependent modulation of the delayed rectifier K+ current and the L-type Ca2+ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. British Journal of Pharmacology, 142 (3), 567–575.
  • [114] Vasconcelos, C. M., Gondim, A. N., Cruz, J. S., Mafra, R. A., Silva, B. A., and Conde-Garcia, E. A. (2008). Aqueous leaf extract of Averrhoa carambola L. (Oxalidaceae) reduces both the inotropic effect of BAY K 8644 on the guinea pig atrium and the calcium current on GH3 cells. 18, 539–543.
  • [115] Lin, T. Y., Lin, Y. W., Lu, C. W., Huang, S. K., and Wang, S. J. (2013). Berberine inhibits the release of glutamate in nerve terminals from rat cerebral cortex. PLoS ONE, 8 (6), e67215.
  • [116] Lu, M., Föstl, J., Dreesen, J., and Knöpfel, T. (1994). P-type calcium channels are blocked by the alkaloid daurisoline. NeuroReport, 5, 1489–1492.
  • [117] Kwan, C. Y. and Achike, F. I. (2002). Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: Cardiovascular effects and mechanisms of action. Acta Pharmacologica Sinica, 23(12), 1057– 1068.
  • [118] Mackie, K. and Hille, B. (1992). Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 3825–3829.
  • [119] Summanen, J., Vuorela, P., Rauha, J. P., Tammela, P., Marjamäki, K., Pasternack, M., et al. (2001). Effects of simple aromatic compounds and flavonoids on Ca2+ fluxes in rat pituitary GH 4C 1 cells. European Journal of Pharmacology, 414(2–3), 125–133.
  • [120] Rajagopal, S. and Ponnusamy, M. (2017). Channelopathies: Application of Natural Products Using Nanotechnology. Calcium Signaling: From Physiology to Diseases. Singapore: Springer, 73–86.
  • [121] Saravanaraman, P., Chinnadurai, R. K., and Boopathy, R. (2014). Why calcium channel blockers could be an elite choice in the treatment of Alzheimer’s disease: A comprehensive review of evidences. Reviews in the Neurosciences, 25 (2), 231–246.
  • [122] Shah, V. N., Chagot, B., and Chazin, W. J. (2017). Calcium-dependent regulation of ion channels. Calcium Binding Proteins, 1,(4), 203–212.
  • [123] Wuis, E. W., Rijntjes, N. V. M., and Van der Kleijn, E. (1989). Whole‐body autoradiography of 14C‐ dantrolene in the marmoset monkey. Pharmacology and Toxicology, 64(1), 156–158.
  • [124] Lyden, P. and Wahlgren, N. G. (2000). Mechanisms of action of neuroprotectants in stroke. Journal of Stroke and Cerebrovascular Diseases, 9(6), 9–14.
  • [125] Lakhan, S. E., Caro, M., and Hadzimichalis, N. (2013). NMDA receptor activity in neuropsychiatric disorders. Frontiers in Psychiatry, 4, 1–7.
  • [126] Kochegarov, A. A. (2003). Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium, 33(3), 145–162.
  • [127] Arranz-Tagarro, J.-A., de los Ríos, C., García, A. G., and Padín, J.-F. (2014). Recent patents on calcium channel blockers: emphasis on CNS diseases. Expert Opinion on Therapeutic Patents, 24(9), 959–977.
  • [128] Yu, S., Li, Y., Chen, J., Zhang, Y., Tao, X., Dai, Q., et al. (2019). TAT-modified w-conotoxin MVIIA for crossing the blood-brain barrier. Marine Drugs, 17 (5), 286.
  • [129] Bellacchio, E. (2013). Mechanism of neurotoxicity of prion and Alzheimer’s disease-related proteins: Molecular insights from bioinformatically identified ω-conotoxin-like pharmacophores. Critical Reviews in Eukaryotic Gene Expression, 23(4), 355–373.
  • [130] Menzler, S., Bikker, J. A., Suman-Chauhan, N., and Horwell, D. C. (2000). Design and biological evaluation of non-peptide analogues of omega-conotoxin MVIIA. Bioorganic and Medicinal Chemistry Letters, 10(4), 345– 347.
  • [131] Nimmrich, V. and Gross, G. (2012). P/Q-type calcium channel modulators. British Journal of Pharmacology, 167(4), 741–759.
  • [132] Charalambous, K. and Wallace, B. A. (2011). NaChBac: The long lost sodium channel ancestor. Biochemistry, 50(32), 6742–6752.
  • [133] Catterall, W. A. (1988) Structure and function of voltage-sensitive ion channels sulfotransferases. Science, 242(4875), 50–61.
  • [134] Chen, R. J. Y., Chung, T. Y., Li, F. Y., Lin, N. H., and Tzen, J. T. C. (2009). Effect of sugar positions in ginsenosides and their inhibitory potency on Na+ /K+ -ATPase activity. Acta Pharmacologica Sinica, 30(1), 61–69.
  • [135] Iftinca, M. C. (2011). Neuronal T-type calcium channels: what’s new? Iftinca: T-type channel regulation. Journal of Medicine and Life, 4(2), 126–138.
  • [136] Gurkoff, G. G., Shahlaie, K., Lyeth, B. G., and Berman, R. F. (2017). Voltage-gated calcium channel blockers for the treatment of traumatic brain injury. New Therapeutics for Traumatic Brain Injury. Academic Press, 179–197.
  • [137] Teichert, R. and Olivera, B. (2010). Natural Products and Ion Channel Pharmacology. Future Medicinal Chemistry, 2(5), 731–744.
Toplam 137 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Sahra Setenay Baran Bu kişi benim

Belma Aslım

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 1-2

Kaynak Göster

APA Baran, S. S., & Aslım, B. (2020). Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 36-50. https://doi.org/10.5281/zenodo.4317954
AMA Baran SS, Aslım B. Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler. GÜFFD. Aralık 2020;1(1-2):36-50. doi:10.5281/zenodo.4317954
Chicago Baran, Sahra Setenay, ve Belma Aslım. “Nörodejeneratif Hastalıkların Ca+2 Homeostazisi Ile İlişkisi Ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, sy. 1-2 (Aralık 2020): 36-50. https://doi.org/10.5281/zenodo.4317954.
EndNote Baran SS, Aslım B (01 Aralık 2020) Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 36–50.
IEEE S. S. Baran ve B. Aslım, “Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler”, GÜFFD, c. 1, sy. 1-2, ss. 36–50, 2020, doi: 10.5281/zenodo.4317954.
ISNAD Baran, Sahra Setenay - Aslım, Belma. “Nörodejeneratif Hastalıkların Ca+2 Homeostazisi Ile İlişkisi Ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (Aralık 2020), 36-50. https://doi.org/10.5281/zenodo.4317954.
JAMA Baran SS, Aslım B. Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler. GÜFFD. 2020;1:36–50.
MLA Baran, Sahra Setenay ve Belma Aslım. “Nörodejeneratif Hastalıkların Ca+2 Homeostazisi Ile İlişkisi Ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 1, sy. 1-2, 2020, ss. 36-50, doi:10.5281/zenodo.4317954.
Vancouver Baran SS, Aslım B. Nörodejeneratif Hastalıkların Ca+2 Homeostazisi ile İlişkisi ve Ca+2 Homeostazisinin Düzenlenmesini Hedef Alan Doğal Bileşenler. GÜFFD. 2020;1(1-2):36-50.