MoO3 Arayüzey Tabakalı Metal/Yarıiletken Yapısının Düşük Frekans Değerleri için Dielektrik Özelliklerinin İncelenmesi
Yıl 2021,
Cilt: 2 Sayı: 1, 24 - 33, 01.05.2021
Yunus Özen
,
Halil İbrahim Efkere
,
Tarik Asar
,
Süleyman Özçelik
Öz
Bu çalışmada, Molibden trioksit (MoO3) ara tabakalı Au/n-GaAs yapısının dielektrik özellikleri 0-4 V aralığında 0.25 V adımlarla düşük frekanslar için incelendi. MoO3 ince filmi radyo frekansı (RF) magnetron püskürtme yöntemi kullanılarak n-tipi GaAs alttaş üzerine biriktirildi. Au/MoO3/n-GaAs yapısının oda sıcaklığında 10, 20, 30, 50, 70 ve 100 kHz frekanslarında, kapasitans–voltaj (C–V) ve kondüktans–voltaj (G/–V) ölçümleri yapıldı. Bu ölçüm sonucunda C ve G dataları kullanılarak Au/MoO3/n-GaAs yapısının dielektrik parametreleri belirlendi. Dielektrik sabiti (𝜀′), dielektrik kayıp (𝜀′′), dielektrik kayıp tanjantı (tan) elektriksel modülüsün (M) gerçel kısmı (𝑀′), sanal kısmı (𝑀′′) ve elektrik iletkenliği (𝜎𝑎𝑐) gibi dielektrik parametreler frekansa bağlı olarak hesaplandı. Elde edilen sonuçlara göre, MoO3 arayüzey tabakasının kapasitör uygulamaları için uygun olduğu görüldü.
Kaynakça
- [1] Girotto C., Voroshazi E., Cheyns D., Heremans P., and Rand B. P., (2011). Solution-Processed MoO3 Thin Films As a Hole-Injection Layer for Organic Solar Cells, ACS Applied Materials Interfaces, 3, 3244.
- [2] Cauduro A. L. F., Reis R. D., Chen G., Schmid A. K., Méthivier C., Rubahn H. G., Bossard-Giannesini L., Cruguel H., Witkowski N., and Madsen M., (2017). Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices, ACS Applied Materials Interfaces, 9, 7717.
- [3] Simchi H., McCandless B. E., Meng T., and Shafarman W. N., (2014). Structural, optical, and surface properties of WO3 thin films for solar cells, Journal of Alloys and Compounds, 617, 609-615.
- [4] Meyer J., Hamwi S., Kröger M., Kowalsky W., Riedl T., and Kahn A., (2012). Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications, Advanced Materials, 24, 5408.
- [5] Kumar G. S., Illyaskutty N., Suresh S., Sreedharan R. S., Nayar V. U., and Pillai V. P. M., (2017). Terbium oxide doped MoO3 nanostructures: Morphology engineering and enhanced photoluminescence, Journal of Alloys and Compounds, 698, 215-227.
- [6] Mahato S., Biswas D., Gerling L. G., Voz C., and Puigdollers J., (2017). Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode, AIP Advances. 7, 8.
- [7] Elumalai N. K., Saha A., Vijila C., Jose R., Jie Z., and Ramakrishna S., (2013). Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer, Physical Chemistry Chemical Physics, 15, 6831.
- [8] Sanehira E. M., Tremolet de Villers B. J., Schulz P., Reese M. O., Ferrere S., Zhu K., Lin Y. L., Berry J. J., and Luther J. M., (2016). Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection, ACS Energy Letters, 1, 38.
- [9] Wang C., Irfan I., Liu X., and Gao Y., (2014). Role of molybdenum oxide for organic electronics: Surface analytical studies, Journal Vacuum Science & Technology B, 32, 040801.
- [10] Rahmani M. B., Keshmiri S. H., Yu J., Sadek A. Z., Al-Mashat L., Moafi A., Latham K., Li Y. X., Wlodarski W., Kalantar-zadeh K., (2010). Gas sensing properties of thermally evaporated lamellar MoO3, Sensors and Actuators, B: Chemical, 145, 13 – 19.
- [11] Bessonov A. A., Kirikova M. N., Petukhov D. I., M., T. Ryhänen, and Bailey M. J. A., (2015). Layered memristive and memcapacitive switches for printable electronics, Nature Materials, 14, 199.
- [12] Zhu K., Wang X., Liu J., Li S., Wang H., Yang L., Liu S., and Xie T., (2017). Novel Amorphous MoS2/MoO3/Nitrogen-Doped Carbon Composite with Excellent Electrochemical Performance for Lithium Ion Batteries and Sodium Ion Batteries, ACS Sustainable Chemical Engineer, 5, 8025.
- [13] Koike K., Wada R., Yagi S., Harada Y., Sasa S., and Yano M., (2014). Characteristics of MoO3 films grown by molecular beam epitaxy, Japanese Journal of Applied Physics, 53, 5.
- [14] Okumu J., Koerfer F., Salinga C., and Wuttig M., (2004). In situ measurements of thickness changes and mechanical stress upon gasochromic switching of thin MoO3 films, Journal of Applied Physics, 95, 7632.
- [15] Torres J., Alfonso J. E., and López-Carreño L. D., (2005). XPS and X‐ray diffraction characterization of MoO3 thin films prepared by laser evaporation, Physica Status Solidi C, 2, 3726.
- [16] Hosono K., Matsubara I., Murayama N., Woosuck S., and Izu N., (2005). Synthesis of polypyrrole/MoO3 hybrid thin films and their volatile organic compound gas-sensing properties, Chemistry of Materials, 17, 349.
- [17] Liu X., Yi S., Wang C., Wang C., and Gao Y., (2014). Electronic structure evolution and energy level alignment at C60/4,4′-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine]/MoOx/indium tin oxide interfaces, Journal of applied Physics, 115, 163708.
- [18] McEvoy T. M., Stevenson K. J., Hupp J. T., and Dang X., (2003). Electrochemical Preparation of Molybdenum Trioxide Thin Films: Effect of Sintering on Electrochromic and Electroinsertion Properties, Langmuir, 19, 4316.
- [19] Patil P. R. and Patil P. S., (2001). Preparation of mixed oxide MoO3–WO3 thin films by spray pyrolysis technique and their characterisation, Thin Solid Films 382, 13.
- [20] Kınacı B., Çetinkaya Ç., Çokduygulular E., Efkere H. İ., Sönmez N. A., and Özçelik S., (2020). Negative capacitance phenomena in Au/SrTiO3/p-Si heterojunction structure, J. Mater. Sci. Mater. Electron. 31(11), 8718- 8726.
- [21] Çokduygulular E., Çetinkaya Ç., Yalçın Y., and Kınacı B. (2020)., A comprehensive study on Cu-doped ZnO (CZO) interlayered MOS structure, J. Mater. Sci. Mater. Electron. 31, 13646- 13656.
- [22] Güzelçimen F., Tanören B., Çetinkaya Ç., Kaya M. D., Efkere H. İ., Özen Y., Bingöl D., Sirkeci M., Kınacı B., Ünlü M. B., and Özçelik S., (2020). The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM, Vacuum 182, 109766.
- [23] Al-Dharob M. H., Kökce A., D. Aldemir A., Özdemir A. F., and Altındal Ş., (2020). The origin of anomalous peak and negative capacitance on dielectric behavior in the accumulation region in Au/(0.07 Zn-doped polyvinyl alcohol)/n-4H–SiC metal-polymer-semiconductor structures/diodes studied by temperature-dependent impedance measurements, J. Phys. Chem. Solids 144, 109523.
- [24] Taşçıoğlu İ., Sevgili O., Azizian-Kalandaragh Y., Altındal S., (2020). Frequency-Dependent Admittance Analysis of Au/n-Si Structure with CoSO4-PVP Interfacial Layer, J Electron Mater 49(6): 3720–3727.
- [25] Kınacı B. (2021), Dielectric Properties of Au/SrTiO3/p-Si Structure Obtained by RF Magnetron Sputtering in a Wide Frequency Range, Silicon doi.org/10.1007/s12633-021-01067-7.
- [26] Buyukbas-Ulusan A., Taşçıoğlu İ., Tataroğlu A., Yakuphanoğlu F., and Altındal S., (2019). A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures, J. Mater. Sci. Mater. Electron. 30, 12122–12129.
- [27] Demirezen S., Tanrıkulu E. E., and Altındal Ş., (2019). The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors, Indian J. Phys. 93, 739–747.
- [28] Tecimer H., (2019). On the frequency–voltage dependent electrical and dielectric profiles of the Al/(Zn-PVA)/p-Si structures, J. Mater. Sci. Mater. Electron. 29, 20141–20145.
- [29] Kınacı B., (2021). The temperature dependent negative dielectric constant phenomena of Au/n–GaAs structure with CZO interfacial layer, Journal of Materials Science: Materials in Electronics, 32, 5928–5935.
- [30] Lvovich V. F., (2012). “Impedance Spectroscopy Applications to Electrochemical and Dielectric Phenomena”, New Jersey: Wiley, 368 sayfa.