Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri

Yıl 2022, Cilt: 3 Sayı: 2, 116 - 122, 25.11.2022

Öz

Günümüzde en önemli problemlerden birisi bakterilerde gözlemlenen çoklu antibiyotik dirençliliğidir. Bu sorun ülkelerin hem sağlık sektörünü hem de ekonomisini etkilemektedir. Mevcut antibiyotiklerin etkisiz kalması sağlık harcamalarına ayrılan bütçenin artmasına sebep olmaktadır. Bu soruna çözüm olarak yeni antimikrobiyal etkiye sahip kimyasallar yeni araştırmaların odak noktası olmuştur. Bu araştırmaların odak noktasını doğal bitkisel kaynaklar oluştursa da antibakteriyel etkiye sahip yeni kimyasalların sentezlenmesi de ön plana çıkmaktadır. Bu kimyasallar arasında Schiff bazları önemli bir yer tutmaktadır. Bu çalışmada da salisiliden anilin Schiff bazı ve onun 2-sübstitüe iyot, klor ve brom halojen türevi Schiff bazlarının hem DMSO hem de DMF’de antibakteriyel etkileri gram negatif Escherichia coli ve gram pozitif Staphylococcus aureus’a karşı ölçülmüştür. DMF’nin aşırı toksik etkisi kimyasalların biyoaktivitesini perdelemiştir. Buna karşılık, DMSO’da çözdürülen kimyasallar antibakteriyel etki göstermişlerdir. Kimyasalların gram negatif E. coli’ ye karşı daha etkili oldukları gözlemlenmiştir. En düşük MİK değeri 135 µg/mL olarak belirlenmiş ve E. coli’ye karşı tüm Schiff bazları bu etkiyi göstermiştir. Dolayısıyla yeni sentezlenen Schiff bazların geleceğin antibiyotik çağının öncülleri olması muhtemeldir.

Kaynakça

  • [1] Mirkin, B. (1998). Mathematical classification and clustering: From how to what and why. Classification, Data analysis, and Data Highways, 172-181.
  • [2] Wang, B., Miao, Y., Zhao, H., Jin, J., & Chen, Y. (2016). A biclustering-based method for market segmentation using customer pain points. Engineering Applications of Artificial Intelligence, 47, 101-109.
  • [3] Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, 269- 274.
  • [4] Busygin, S., Prokopyev, O., & Pardalos, P. M. (2008). Biclustering in data mining. Computers & Operations Research, 35(9), 2964-2987.
  • [5] Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. “International Conference on Intelligent Systems for Molecular Biology” kongresinde sunulan bildiri, UC San Diego, California, USA.
  • [6] Lazzeroni, L., & Owen, A. (2002). Plaid models for gene expression data. Statistica Sinica, 61-86.
  • [7] Bergmann, S., Ihmels, J., & Barkai, N. (2003). Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review E, 67(3), 031902.
  • [8] Ben-Dor, A., Chor, B., Karp, R., & Yakhini, Z. (2003). Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal of Computational Biology, 10(3-4), 373-384.
  • [9] Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9), 1122-1129.
  • [10] Li, G., Ma, Q., Tang, H., Paterson, A. H., & Xu, Y. (2009). QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 37(15), 101.
  • [11] Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Talloen, W. (2010). FABIA: factor analysis for bicluster acquisition. Bioinformatics, 26(12), 1520-1527.
  • [12] Chekouo, T., & Murua, A. (2015). The penalized biclustering model and related algorithms. Journal of Applied Statistics, 42(6), 1255-1277.
  • [13] Biswal, B. S., Mohapatra, A., & Vipsita, S. (2019). Ensemble Neighborhood Search (ENS) for biclustering of gene expression microarray data and single cell RNA sequencing data. Journal of King Saud University-Computer and Information Sciences, 5(2), 105-112.
  • [14] Chowdhury, H. A., Ahmed, H. A., Bhattacharyya, D. K., & Kalita, J. K. (2020). NCBI: A Novel Correlation Based Imputing Technique Using Biclustering. Computational Intelligence in Pattern Recognition, 1, 509-519.
  • [15] Seridi, K., Jourdan, L., & Talbi, E.-G. (2012). Hybrid metaheuristic for multi-objective biclustering in microarray data. “2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)” kongresinde sunulan bildiri, San Diego, California, USA.
  • [16] Al-Akwaa, F. M., Ali, M. H., & Kadah, Y. M. (2009). Bicat_plus: An automatic comparative tool for bi/clustering of gene expression data obtained using microarrays. “2009 National Radio Science Conference” kongresinde sunulan bildiri.
  • [17] Chia, B. K. H., & Karuturi, R. K. M. (2010). Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms. Algorithms for Molecular Biology, 5(1), 23.
  • [18] Karim, M. B., Kanaya, S., & Altaf-Ul-Amin, M. (2019). Implementation of BiClusO and its comparison with other biclustering algorithms. Applied Network Science, 4(1), 1-15.
  • [19] Liu, X., & Wang, L. (2006). Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics, 23(1), 50-56.
  • [20] Padilha, V. A., & Campello, R. J. (2017). A systematic comparative evaluation of biclustering techniques. BioMed Central Bioinformatics, 18(1), 55.
  • [21] Seridi, K., Jourdan, L., & Talbi, E.-G. (2015). Using multiobjective optimization for biclustering microarray data. Applied Soft Computing, 33, 239-249.
  • [22] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95- 99.
  • [23] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.
  • [24] Alikar, N., Mousavi, S. M., Ghazilla, R. A. R., Tavana, M., & Olugu, E. U. (2017). Application of the NSGA-II algorithm to a multi-period inventory-redundancy allocation problem in a series-parallel system. Reliability Engineering & System Safety, 160, 1-10.
  • [25] Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H., & Nguyen-Thoi, T. (2017). Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm. Composite Structures, 168, 498-509.
  • [26] Wang, B., Liang, Y., Zheng, T., Yuan, M., & Zhang, H. (2018). Multi-objective site selection optimization of the gas-gathering station using NSGA-II. Process Safety and Environmental Protection, 119, 350-359.
  • [27] Wang, S., Ma, S., & Duan, W. (2018). Seakeeping optimization of trimaran outrigger layout based on NSGA-II. Applied Ocean Research, 78, 110-122.
  • [28] Yang, Y., Cao, L., Wang, C., Zhou, Q., & Jiang, P. (2018). Multi-objective process parameters optimization of hot-wire laser welding using ensemble of metamodels and NSGA-II. Robotics and Computer-Integrated Manufacturing, 53, 141-152.
  • [29] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
  • [30] Türkşen, Ö. (2011). Çok Yanıtlı Yüzey Problemlerinin Çözümüne Bulanık ve Sezgisel Yaklaşım. Doktora Tezi. Ankara Üniversitesi Fen bilimleri Enstitüsü. Ankara. 126.
  • [31] Hwang, C., & Yoon, K. (1981). Multiple decision attribute making: Methods and applications. New York: Springer-Verlag, 58-191.
  • [32] Pamucar D. & Cirovic G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (mabac). Expert Systems with Applications, 42(6), 3016- 3028.
  • [33] Liu P., Li H., Wang P., & Liu J. (2016). Electre method and its application in multiple attribute decision making based on ins. Journal of Shandong University of Finance and Economics, 28(2), 80-87.
  • [34] Pontes, B., Girldez, R., & Aguilar-Ruiz, J. S. (2015). Quality measures for gene expression biclusters. Plos One, 10(3), 0115497.
  • [35] Yip, K. Y., Cheung, D. W., & Ng, M. K. (2004). Harp: A practical projected clustering algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1387-1397.
  • [36] Lashkargir, M., Monadjemi, S. A., & Dastjerdi, A. B. (2009). A new biclustering method for gene expersion data based on adaptive multi-objective particle swarm optimization. In 2009 Second International Conference on Computer and Electrical Engineering, 1, 559-563.
  • [37] Liu, J., Li, Z., Hu, X., & Chen, Y. (2009, April). Biclustering of microarray data with MOSPO based on crowding distance. In BMC bioinformatics, 10(4), 1-10.
  • [38] Mitra, S., & Banka, H. (2006). Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition, 39(12), 2464-2477.
  • [39] Talbi, E.-G. (2009). Metaheuristics: from design to implementation (74). New Jersey: John Wiley & Sons, 34- 48.
  • [40] Türkşen, Ö., & Akgün, F. (2018). Genetik-Simpleks hibrit algoritması ile doğrusal olmayan regresyon model parametrelerinin nokta tahmini. İstatistikçiler Dergisi: İstatistik ve Aktüerya, 11(2), 81-92.
  • [41] Dale, J., Zhao, J., & Obafemi-Ajayi, T. (2019). Multi-objective optimization approach to find biclusters in gene expression data. In 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1-8
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Tuğçe Deniz Karaca 0000-0002-7471-1759

Aytac Kocabas 0000-0001-7622-1932

Mehmet Abdulkadir Akay 0000-0001-5763-4379

Yayımlanma Tarihi 25 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 2

Kaynak Göster

APA Karaca, T. D., Kocabas, A., & Akay, M. A. (2022). Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(2), 116-122.
AMA Karaca TD, Kocabas A, Akay MA. Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri. GÜFFD. Kasım 2022;3(2):116-122.
Chicago Karaca, Tuğçe Deniz, Aytac Kocabas, ve Mehmet Abdulkadir Akay. “Bazı Salisiliden Anilin Schiff Bazlarının DMSO Ve DMF Çözücülerinde Antibakteriyel Aktiviteleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 3, sy. 2 (Kasım 2022): 116-22.
EndNote Karaca TD, Kocabas A, Akay MA (01 Kasım 2022) Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri. Gazi Üniversitesi Fen Fakültesi Dergisi 3 2 116–122.
IEEE T. D. Karaca, A. Kocabas, ve M. A. Akay, “Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri”, GÜFFD, c. 3, sy. 2, ss. 116–122, 2022.
ISNAD Karaca, Tuğçe Deniz vd. “Bazı Salisiliden Anilin Schiff Bazlarının DMSO Ve DMF Çözücülerinde Antibakteriyel Aktiviteleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 3/2 (Kasım 2022), 116-122.
JAMA Karaca TD, Kocabas A, Akay MA. Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri. GÜFFD. 2022;3:116–122.
MLA Karaca, Tuğçe Deniz vd. “Bazı Salisiliden Anilin Schiff Bazlarının DMSO Ve DMF Çözücülerinde Antibakteriyel Aktiviteleri”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 3, sy. 2, 2022, ss. 116-22.
Vancouver Karaca TD, Kocabas A, Akay MA. Bazı Salisiliden Anilin Schiff Bazlarının DMSO ve DMF Çözücülerinde Antibakteriyel Aktiviteleri. GÜFFD. 2022;3(2):116-22.