Yeşil Sentez Yoluyla Selenyum Nanopartikül (SeNP) Sentezİ
Yıl 2023,
Cilt: 4 Sayı: 1, 32 - 50, 26.05.2023
Berat Çınar Acar
,
Zehranur Yuksekdag
,
Tuğba Şahin
,
Elif Açar
,
Filiz Kara
Öz
Nanopartiküller küçük boyutları, yüksek biyolojik aktiviteleri, biyoyararlanımları, düşük toksisiteleri ve yaygın kullanımları nedeniyle büyük ilgi alanı haline gelmiştir. Son yıllarda sentez aşamasında toksik kimyasalların kullanılması, maliyetin yüksek olması ve sentezlenen partiküllerin kararsız olması nedeniyle fiziksel ve kimyasal yöntemlere alternatif olarak yeşil sentez adı verilen bir yöntem ortaya çıkmıştır. Yeşil sentezde bitki özleri, mantar, maya, bakteri kültürü filtratı gibi biyolojik kaynaklar yaygın olarak kullanılmaktadır. Bu biyolojik kaynakların kullanılmasıyla birçok metal (gümüş, altın, çinko, selenyum vb.) sentezlenmiş ve hızla sentezlenmeye devam etmektedir. Selenyum insan vücudu için gerekli bir eser elementtir. Biyolojik kaynaklar kullanılarak sentezlenen selenyum nanoparçacıklarının (SeNP) inorganik ve organik Se’ye kıyasla benzersiz fiziksel, kimyasal özelliklere ve biyolojik aktiviteye sahip olduğu belirlenmiştir.
Kaynakça
- Nayak, V., Singh, K. R., Singh, A. K., Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849-2878.
- Lee, E., Lee, M., Kwon, S., Kim, J., Kwon, Y. (2022). Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Convergence, 9(1), 27.
- Park, J., Kim, T. H., Kwon, O., Ismail, M., Mahata, C., Kim, Y., Kim, S. (2022). Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy, 104, 107886.
- Yoon, J., Shin, M., Kim, D., Lim, J., Kim, H. W., Kang, T., Choi, J. W. (2022). Bionanohybrid composed of metalloprotein/DNA/MoS2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosensors and Bioelectronics, 196, 113725.
- Prasad, R., Kumar, V., Kumar, M. et al. (2017). Nanotechnology and shelf-life of animal foods. In: Nanotechnology: Food and Environmental Paradigm (edited by R. Prasad, V. Kumar & M. Kumar). Pp. 1–344. Singapore: Springer.
- Ndwandwe, B. K., Malinga, S. P., Kayitesi, E., Dlamini, B. C. (2021). Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science and Technology, 56(6), 2640-2650.
- Menon, S., KS, S. D., Agarwal, H., Shanmugam, V. K. (2019). Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications, 29, 1-8.
- Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335.
- Singh, P., Kim, Y. J., Zhang, D., Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588-599.
- Ahmad, F., Ashraf, N., Ashraf, T., Zhou, R. B., Yin, D. C. (2019). Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Applied Microbiology and Biotechnology, 103, 2913-2935.
- Modena, M. M., Rühle, B., Burg, T. P., Wuttke, S. (2019). Nanoparticle characterization: What to measure? Advanced Materials. 31(32), 1901556.
- Talapin, D. V., Shevchenko, E. V. (2016). Nanoparticle Chemistry. Chemical Reviews.116, 10343-10345.
- Gong, C., Dias, M.R.S., Wessler, G.C., Taillon, J.A., Salamanca-Riba, L.G., Leite, M.S. (2017). Near‐field optical properties of fully alloyed noble metal nanoparticles. Advanced Optical Materials. 5(1), 1600568.
- Koul, B., Poonia, A. K., Yadav, D., Jin, J. O. (2021). Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules, 11(6), 886.
- Hirschle, P., Preiß, T., Auras, F., Pick, A., Völkner, J., Valdepérez, D., Witte, G., Parak, W. J., Rädler, J. O., Wuttke, S. (2016). Exploration of MOF nanoparticle sizes using various physical characterization methods–is what you measure what you get? CrystEngComm, 18(23), 4359-4368.
- Kulkarni, V. S. (2009). Handbook of Non-Invasive Drug Delivery Systems: Science and Technology, William Andrew, Oxford.
- Sakulkhu, U., Mahmoudi, M., Maurizi, L., Coullerez, G., Hofmann-Amtenbrink, M., Vries, M., Motazacker, M., Rezaee, F., Hofmann, H. (2015). Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomaterials Science, 3, 265.
- Jo, D. H., Kim, J. H., Lee, T.G, Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, 11(7), 1603-1611.
- Liu, J., Wu, C., Xiao, D., Kopold, P., Gu, L., Van Aken, P. A., Maier, J., Yu, Y. (2016). MOF-derived hollow co9s8 nanoparticles embedded in graphitic carbon nanocages with superior li-ıon storage. Small. 12(17), 2354-64.
- Baeza, A., Ruiz-Molina, D., Vallet-Regí, M. (2017). Recent advances in porous nanoparticles for drug delivery in antitumoral applications: Inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opinion on Drug Delivery. 14(6), 783-796.
- Min, Y., Caster, J. M., Eblan, M. J., Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115(19), 11147–11190.
- Shi, J., Kantoff, P. W., Wooster, R., Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges, and opportunities. Nature Reviews Cancer, 17(1), 20-37.
- Cabral, H., Miyata, K., Osada, K., Kataoka, K. (2018). Block copolymer micelles in nanomedicine applications. Chemical Reviews, 118(14), 6844-6892.
- Anselmo, A. C., Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4(3):e10143.
- Sportelli, M. C., Izzi, M., Volpe, A., Clemente, M., Picca, R. A., Ancona, A., Cioffi, N. (2018). The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics, 7(3), 67.
- Kharisov, B. I., Dias, H. R., Kharissova, O. V. (2019). Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234-1246.
- Abdalla, S. S., Katas, H., Azmi, F., Busra, M. F. M. (2020). Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity, and current status. Current Drug Delivery, 17(2), 88-100.
- Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Souto, E. B. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials, 10(2), 292.
- Csakvari, A. C., Moisa, C., Radu, D. G., Olariu, L. M., Lupitu, A. I., Panda, A. O., Pop, G., Chambre, D., Socoliuc, V., Copolovici, L., Copolovici, D. M. (2021). Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Molecules, 26(13), 4041.
- Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, 802-812.
- Ranjitha, V. R., Rai, V. R. (2021). Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. Journal of Pharmaceutical Investigation, 51, 117-135.
- Pouri, S., Motamedi, H., Honary, S., Kazeminezhad, I. (2018). Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Brazilian Archives of Biology and Technology, 60, e17160452.
- Araie, H., Shiraiwa, Y. (2016). Selenium in algae. The Physiology of Microalgae, 281-288.
- Vinković Vrček, I. (2018). Selenium nanoparticles: Biomedical applications. Selenium, 393-412.
- Garza-García, J. J. O., Hernández-Díaz, J. A., Zamudio-Ojeda, A., León-Morales, J. M., Guerrero-Guzmán, A., Sánchez-Chiprés, D. R., López-Velázquez, J. C., García-Morales, S. (2022). The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research, 200, 2528–2548.
- Sanjuán, R., Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences, 73, 4433-4448.
- Ozer, T., Henry, C. S. (2021). Based analytical devices for virus detection: Recent strategies for current and future pandemics. TrAC Trends in Analytical Chemistry, 144, 116424.
- Ilkhani, H., Farhad, S. (2018). A novel electrochemical DNA biosensor for Ebola virus detection. Analytical Biochemistry, 557, 151-155.
- Park, J., Kim, T. H., Kwon, O., Ismail, M., Mahata, C., Kim, Y., Kim, S. (2022). Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy, 104, 107886.
- Nidzworski, D., Siuzdak, K., Niedziałkowski, P., Bogdanowicz, R., Sobaszek, M., Ryl, J., Weiher, P., Sawczak, M., Wnuk, E., Goddard III, W.A., Jaramillo-Botero, Andrés, Ossowski, T. (2017). A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Scientific Reports, 7(1), 1-10.
- Ramya, S., Shanmugasundaram, T., Balagurunathan, R. (2015). Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic, and anti-viral activities. Journal of Trace Elements in Medicine and Biology, 32, 30-39.
- Bisht, N., Phalswal, P., Khanna, P. K. (2022). Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances, 3(3), 1415-1431.
- Zhang, J., Wang, X., Xu, T. (2008). Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicological Sciences, 101(1), 22–31.
- Kang, L., Wu, Y., Zhang, J., An, Q., Zhou, C., Li, D., Pan, C. (2022). Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis melo L.) plants. Ecotoxicology and Environmental Safety, 241, 113777.
- Zhou, J., Liu, Y., Hu, Y., Zhang, D., Xu, W., Chen, L., Cai, J. (2023). Selenium nanoparticles synergistically stabilized by starch microgel and EGCG: Synthesis, characterization, and bioactivity. Foods, 12(1), 13.
- Ikram, M., Javed, B., Raja, N. I. (2021). Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine, 16, 249.
- Choi, H. K., Yoon, J. (2023). Nanotechnology-assisted biosensors for the detection of viral nucleic acids: An Overview. Biosensors, 13(2), 208.
- Mellinas, C., Jiménez, A., Garrigós, M. D. C. (2019). Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules, 24(22), 4048.
- Pyrzynska, K., Sentkowska, A. (2021). Biosynthesis of selenium nanoparticles using plant extracts. Journal of Nanostructure in Chemistry, 12, 467–480.
- Kumar, A., Prasad, K. S. (2021). Role of nano-selenium in health and environment. Journal of Biotechnology, 325, 152-163.
- Bhattacharjee, A., Basu, A., Bhattacharya, S. (2019). Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. The Nucleus, 62, 259-268.
- Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., Faridi-Majidi, R. (2019). Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8), 0850d8.
- Sentkowska, A., Pyrzyńska, K. (2022). The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules, 27(8), 2486.
- Sharma, G., Pandey, S., Ghatak, S., Watal, G. Rai, P. K. (2017). Potential of spectroscopic techniques in the characterization of "green nanomaterials". Nanomaterials in Plants, Algae, and Microorganisms, 1, 59–77.
- Vieira, A. P., Stein, E. M., Andreguetti, D. X., Cebrián-Torrejón, G., Doménech-Carbó, A., Colepicolo, P., Ferreira, A. M. D. (2017). " Sweet Chemistry": A green way for obtaining selenium nanoparticles active against cancer cells. Journal of the Brazilian Chemical Society, 28, 2021-2027.
- Balasooriya, E. R., Jayasinghe, C. D., Jayawardena, U. A., Ruwanthika, R. W. D., Mendis de Silva, R., Udagama, P. V. (2017). Honey mediated green synthesis of nanoparticles: New era of safe nanotechnology. Journal of Nanomaterials, 2017.
- Bartosiak, M., Giersz, J., Jankowski, K. (2019). Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchemical Journal, 145, 1169-1175.
- Shoeibi, S., Mashreghi, M. (2017). Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology, 39, 135-139.
- Alagesan, V., Venugopal, S. (2019). Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience, 9, 105-116.
- Dhanraj, G., Rajeshkumar, S. (2021). Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. Journal of Nanomaterials, 1-9.
- Wadhwani, S. A., Gorain, M., Banerjee, P., Shedbalkar, U. U., Singh, R., Kundu, G. C., Chopade, B. A. (2017). Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine, 12, 6841.
- Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., Pawar, S. H. (2020). Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters, 264, 127353.
- Sharma, G., Sharma, A. R., Bhavesh, R., Park, J., Ganbold, B., Nam, J. S., Lee, S. S. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules, 19(3), 2761-2770.
- Kora, A. J., Rastogi, L. (2016). Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181, 231-236.
- Srivastava, N., Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38, 1723-1730.
- Liu, Y., Zeng, S., Liu, Y., Wu, W., Shen, Y., Zhang, L., Li, C., Chen, H., Liu, A., Shen, L., Wang, C. (2018). Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. International Journal of Biological Macromolecules, 114, 632-639.
- Diko, C. S., Zhang, H., Lian, S., Fan, S., Li, Z., Qu, Y. (2020). Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Materials Chemistry and Physics, 246, 122583.
- Srivastava, N., Mukhopadhyay, M. (2015). Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. Journal of Cluster Science, 26, 1473-1482.
- Deepa, B. Ganesan, V. (2015). Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis willd. International Journal of Science and Research, 4, 690–695.
- Alvi, G. B., Iqbal, M. S., Ghaith, M. M. S., Haseeb, A., Ahmed, B., Qadir, M. I. (2021). Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Scientific Reports, 11(1), 4811.
- Wang, T., Yang, L., Zhang, B., Liu, J. (2010). Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces, 80(1), 94-102.
- Zambonino, M. C., Quizhpe, E. M., Jaramillo, F. E., Rahman, A., Santiago Vispo, N., Jeffryes, C., Dahoumane, S. A. (2021). Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International Journal of Molecular Sciences, 22(3), 989.
- Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., Gonzalez, M., Smith, C., Mondaca, M. A. (2012). Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14, 1-9.
- Hnain, A., Brooks, J., Lefebvre, D. D. (2013). The synthesis of elemental selenium particles by Synechococcus leopoliensis. Applied Microbiology and Biotechnology, 97, 10511-10519.
- Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D., Turner, R. J. (2018). Biosynthesis of selenium-nanoparticles and-nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology, 41, 1-8.
- Estevam, E. C., Griffin, S., Nasim, M. J., Denezhkin, P., Schneider, R., Lilischkis, R., Dominguez-Alvarez, E., Witek, K., Latacz, G., Keck, C., Schäfer, K. H., Kieć-Kononowicz, K., Handzlik, J., Jacob, C. (2017). Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? Journal of Hazardous Materials, 324, 22-30.
- Rajeshkumar, S., Veena, P., Santhiyaa, R. V. (2018). Synthesis and characterization of selenium nanoparticles using natural resources and its applications. Exploring the Realms of Nature for Nanosynthesis, 63-79.
- Xu, C., Qiao, L., Ma, L., Yan, S., Guo, Y., Dou, X., Zhang, B., Roman, A. (2019). Biosynthesis of polysaccharides-capped selenium nanoparticles using Lactococcus lactis NZ9000 and their antioxidant and anti-inflammatory activities. Frontiers in Microbiology, 10, 1632.
- Boroumand Moghaddam, A., Namvar, F., Moniri, M., Md. Tahir, P., Azizi, S., Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 20(9), 16540-16565.
- Sarkar, J., Dey, P., Saha, S., Acharya, K. (2011). Mycosynthesis of selenium nanoparticles. Micro and Nano Letters, 6(8), 599-602.
- Joshi, S. M., De Britto, S., Jogaiah, S., Ito, S. I. (2019). Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules, 9(9), 419.
- Herrero, E., Wellinger, R. E. (2015). Yeast as a model system to study metabolic impact of selenium compounds. Microbial Cell, 2(5), 139.
- Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., Paknikar, K. M. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 78(5), 583-588.
- Kumar, P., Senthamil Selvi, S., Lakshmi Prabha, A., Prem Kumar, K., Ganeshkumar, R. S., Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomedicine and Engineering, 4(1), 12-16.
- Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., Ghodake, G. S., Bharagava, R. N., Banu, J. R. Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20-35.
- Rasouli, M. (2019). Biosynthesis of selenium nanoparticles using yeast Nematospora coryli and examination of their anti‐candida and anti‐oxidant activities. IET Nanobiotechnology, 13(2), 214-218.
- Ashengroph, M., Tozandehjani, S. (2022). Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochemistry, 116, 197-205.
- Chen, T., Wong, Y. S., Zheng, W., Bai, Y., Huang, L. (2008). Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces, 67(1), 26-31.
- Nabi, F., Arain, M. A., Hassan, F., Umar, M., Rajput, N., Alagawany, M., Syed, S. F., Soomro, J., Somroo, F., Liu, J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. World's Poultry Science Journal, 76(3), 459-471.
- Galić, E., Radić, K., Golub, N., Vitali Čepo, D., Kalčec, N., Vrček, E., Vinković, T. (2022). Utilization of olive pomace in green synthesis of selenium nanoparticles: Physico-chemical characterization, bioaccessibility and biocompatibility. International Journal of Molecular Sciences, 23(16), 9128.
- Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.
- Quiterio-Gutiérrez, T., Ortega-Ortiz, H., Cadenas-Pliego, G., Hernández-Fuentes, A. D., Sandoval-Rangel, A., Benavides-Mendoza, A., Cabrera-de la Fuente, M., Juárez-Maldonado, A. (2019). The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences, 20(8), 1950.
- Sarwar, N., Akhtar, M., Kamran, M. A., Imran, M., Riaz, M. A., Kamran, K., Hussain, S. (2020). Selenium biofortification in food crops: Key mechanisms and future perspectives. Journal of Food Composition and Analysis, 93, 103615.
- Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., Rather, I. A. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8, 1501.
- Biji, K. B., Ravishankar, C. N., Mohan, C. O., Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: A review. Journal of Food Science and Technology, 52, 6125-6135.
- Khiralla, G. M., El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Science and Technology, 63(2), 1001-1007.
- Siangproh, W., Dungchai, W., Rattanarat, P., Chailapakul, O. (2011). Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review. Analytica Chimica Acta, 690(1), 10-25.
- Li, Y., Li, X., Wong, Y. S., Chen, T., Zhang, H., Liu, C., Zheng, W. (2011). The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials, 32(34), 9068-9076.
- Haddadian, A., Robattorki, F. F., Dibah, H., Soheili, A., Ghanbarzadeh, E., Sartipnia, N., Hajrasouliha, S., Pasban, K., Andalibi, R., Ch, M., Azari, A., Chitgarzadeh, A., Kashtali, A., Mastali, F., Noorbazargan, H., Mirzaie, A. (2022). Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Scientific Reports, 12(1), 21938.
- Prasad, K. S., Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157, 275-283.
- Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melçova, M., Opatrilova, R., Zidkova, J., Bjørklund, G., Sochor, J., Kizek, R. (2018). Nano-selenium and its nanomedicine applications: A critical review. International Journal of Nanomedicine, 2107-2128.
- Cong, W., Bai, R., Li, Y. F., Wang, L., Chen, C. (2019). Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Applied Materials & Interfaces, 11(38), 34725-34735.
- Nikam, P. B., Salunkhe, J. D., Minkina, T., Rajput, V. D., Kim, B. S., Patil, S. V. (2022). A review on green synthesis and recent applications of red nano selenium. Results in Chemistry, 100581.
- Xu, C., Qiao, L., Ma, L., Guo, Y., Dou, X., Yan, S., Zhang, B., Roman, A. (2019). Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. International Journal of Nanomedicine, 4491-4502.
- Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Frontiers in Microbiology, 11, 928.
- Efe, F., Yüksekdağ, Z., Çınar Acar, B. (2022). Lactobacillus cinsi bakteriler tarafından üretilen biyosürfektanların anti-biyofilm ve anti-mikrobiyal aktivitelerinin belirlenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(2): 102-115. ISSN 2757-5543.
- Van Houdt, R., Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117-1131.
- San Keskin, N. O., Akbal Vural, O., Abaci, S. (2020). Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiology Journal, 37(10), 919-928.
- Miglani, S., Tani-Ishii, N. (2021). Biosynthesized selenium nanoparticles: Characterization, antimicrobial, and antibiofilm activity against Enterococcus faecalis. Peer J, 9, e11653.
- Alam, H., Khatoon, N., Khan, M. A., Husain, S. A., Saravanan, M., Sardar, M. (2020). Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science, 31, 1003-1011.
- Ullah, A., Mirani, Z. A., Binbin, S., Wang, F., Chan, M. W. H., Aslam, S., Yonghong, L., Hasan, N., Naveed, M., Hussain, S., Khatoon, Z. (2023). An elucidative study of the anti-biofilm effect of selenium nanoparticles (SeNPs) on selected biofilm producing pathogenic bacteria: A disintegrating effect of SeNPs on bacteria. Process Biochemistry, 126, 98-107.
- Dioguardi, M., Di Gioia, G., Illuzzi, G., Arena, C., Caponio, V. C. A., Caloro, G. A., Zhurakivska, K., Adipietro, I., Troiano, G., Lo Muzio, L. (2019). Inspection of the microbiota in endodontic lesions. Dentistry Journal 2(2):1-15.
- Jhajharia, K., Parolia, A., Shetty, K. V., Mehta, L.K. (2015). Biofilm in endodontics: A review. Journal of International Society of Preventive and Community Dentistry 5(1), 1-12.
- Prada, I., Micó-Muñoz, P., Giner-Lluesma, T., Micó-Martínez, P., Collado-Castellano, N., Manzano-Saiz, A. (2019). Influence of microbiology on endodontic failure: literature review. Medicina Oral Patología Oral y Cirugia Bucal 24, e364-e372.
- Nguyen, T. H., Vardhanabhuti, B., Lin, M., Mustapha, A. (2017). Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control, 77, 17-24.
- Vijayakumar, S., Chen, J., Divya, M., Durán-Lara, E. F., Prasannakumar, M., Vaseeharan, B. (2022). A review on biogenic synthesis of selenium nanoparticles and its biological applications. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2355-2370.
- Shoeibi, S., Mozdziak, P., Golkar-Narenji, A. (2017). Biogenesis of selenium nanoparticles using green chemistry. Topics in Current Chemistry, 375, 1-21.
- Shakibaie, M., Mohazab, N. S., Mousavi, S. A. A. (2015). Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur Journal of Microbiology, 8(9).
- Shahbaz, M., Akram, A., Raja, N. I., Mukhtar, T., Mehak, A., Fatima, N., Ajmal, M., Ali, K., Nilofar Mustafa, N., Abasi, F. (2023). Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. Plos One, 18(2), e0274679.
- Ehrenstein, J. K., van Zon, S. K. R., Duijts, S. F. A., van Dijk, B. A. C., Dorland, H. F., Schagen, S. B., Bültmann, U. (2020). Type of cancer treatment and cognitive symptoms in working cancer survivors: An 18-month follow-up study, Journal of Cancer Survivorship, 14, 2, 158-167.
- Salem, S. S., Fouda, M. M., Fouda, A., Awad, M. A., Al-Olayan, E. M., Allam, A. A., Shaheen, T. I. (2020). Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. Journal of Cluster Science, 32, 351-361.
- Chen, F., Zhang, X. H., Hu, X. D., Liu, P. D., Zhang, H. Q. (2018). The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artificial Cells, Nanomedicine, and Biotechnology, 46(5), 937-948.
- Cruz, L. Y., Wang, D., Liu, J. (2019). Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. Journal of Photochemistry and Photobiology B: Biology, 191, 123-127.
- Abdelfattah, M. S., Badr, S. E., Lotfy, S. A., Attia, G. H., Aref, A. M., Abdel Moneim, A. E., Kassab, R. B. (2020). Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotoxicity Research, 37, 77-92.
- Othman, M. S., Obeidat, S. T., Al-Bagawi, A. H., Fareid, M. A., Fehaid, A., Moneim, A. E. A. (2022). Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. Journal of Integrative Medicine, 20(1), 65-72.
- Yoon, D. J., Kwan, B. H., Chao, F. C., Nicolaides, T. P., Phillips, J. J., Lam, G. Y., Mason, A. B., Weiss, W. A., Kamei, D. T. (2010). Intratumoral Therapy of Glioblastoma Multiforme Using Genetically Engineered Transferrin for Drug DeliveryGenetically Engineered Tf-Toxin Conjugates for GBM Therapy. Cancer Research, 70(11), 4520-4527.
- Zhang, P., Hu, L., Yin, Q., Zhang, Z., Feng, L., Li, Y. (2012). Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. Journal of Controlled Release, 159(3), 429-434.
- Huang, Y., He, L., Liu, W., Fan, C., Zheng, W., Wong, Y. S., Chen, T. (2013). Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials, 34(29), 7106-7116.
- Spyridopoulou, K., Aindelis, G., Pappa, A., Chlichlia, K. (2021). Anticancer activity of biogenic selenium nanoparticles: apoptotic and immunogenic cell death markers in colon cancer cells. Cancers, 13(21), 5335.
- Deng, W., Xie, Q., Wang, H., Ma, Z., Wu, B., Zhang, X. (2017). Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine: Nanotechnology, Biology and Medicine, 13(6), 1965-1974.
- Zhao, S. J., Wang, D. H., Li, Y. W., Han, L., Xiao, X., Ma, M., Wan, D. C., Hong, A., Ma, Y. (2017). A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. International Journal of Nanomedicine, 12, 2143.
- Al-Quraishy, S., Dkhil, M. A., Abdel Moneim, A. E. (2015). Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. International Journal of Nanomedicine, 6741-6756.