Research Article
BibTex RIS Cite

Matrix Representation of Dual Quaternions

Year 2013, Volume: 26 Issue: 4, 535 - 542, 02.01.2014

Abstract

After a review of some properties of dual quaternions, De Moivre's and Euler's formulas for the matrices associated with these quaternions are studied. In special case, De Moivre's formula implies that there are uncountably many matrices of unit dual quaternions satisfying n A I = for n≥3. Also; we give the relation between the powers of matrices of dual quaternions. 

References

  • Adler, S. L.,“Quaternionic Quantum Mechanicsand Quantum Fields”, Oxford University Pressinc., New York, (1995).
  • Agrawal O. P.,“Hamilton Operatorsand Dual- number-quaternions in Spatial Kinematics”, Mech. Mach. Theory, 22 (1987) no.6, 569-575.
  • Ata, E.,Yayli, Y., “Dual Unitary Matrices and Unit Dual Dynamical System”, 10:1-12(2008). Geometry
  • Cho, E.,“De-Moivre Formula forQuaternions”, Appl. Math. Lett.,11(6): 33-35(1998). [5] Clifford,
  • W.,“Preliminary Sketch of
  • Biquaternions”, Proc. London Math. Soc.,4: 381- 395(1873).
  • Gungor, M.A., Sarduvan, M., “A Note on Dual Quaternions and Matrices of Dual Quaternions”, Scientia Magna, 7(1): 1-11(2011). [7] Gro, B.J., Trenkler, G., Troschke, S., “Quaternions: Futher Contributionsto a Matrix Oriented Approach”, Linear Algebra and its Appl., 326: 205-213(2001).
  • Jafari, M., Mortazaasl, H., Yayli, Y., “De Moivre's Formula for Matrices of Quaternions”, JP J. of Algebra, Number Theory and appl., 21(1):57-67 (2011).
  • Kabadayi, H., Yayli, Y., “De-Moivre's Formula for Dual Quaternions”, Kuwait J. Of Sci.&Tech., 38 (1):15-23(2011).
  • KotelNikov,A.P., “VintovoeSchislenie i Niko toriya Prilozheniyeevo k geometrie i mechaniki”, Kazan, (1895).
  • Ozdemir, M.,“The Roots of a Split Quaternion”, Applied Math. Lett., 22: 258-263(2009). [12] Study E.,“Von Den Bewegungenund Umlegungen”, Mathematische Annalen, 39: 441- 564(1891).
  • Ward,J.P., “Quaternions and Cayley Numbers Algebra and Applications”, Kluwer Academic Publishers, London, (1997).
  • Whittlesey, J., Whittlesey K., “Some Geometrical Generalizations of Euler's Formula”, Int. J. Of math. Edu. in Sci. &Tech., 21(3): 461-468(1990).
  • Yang, A.T., Freudensterin, F., “Application of Dual-number Quaternion Algebra to the Analysis of Spatial Mechanisms”, ASME Journal of applied Mechnics 86E (2):300-308(1964).
  • Yayli, Y.,“Homothetic Motions at E⁴”, Mech. Mach. Theory, 27( 3): 303-305(1992). [17] Zhang,
  • F.,Quaternions and Matrices of
  • Quaternions, Linea rAlgebra and its Appl., 251: 21-57(1997).
Year 2013, Volume: 26 Issue: 4, 535 - 542, 02.01.2014

Abstract

References

  • Adler, S. L.,“Quaternionic Quantum Mechanicsand Quantum Fields”, Oxford University Pressinc., New York, (1995).
  • Agrawal O. P.,“Hamilton Operatorsand Dual- number-quaternions in Spatial Kinematics”, Mech. Mach. Theory, 22 (1987) no.6, 569-575.
  • Ata, E.,Yayli, Y., “Dual Unitary Matrices and Unit Dual Dynamical System”, 10:1-12(2008). Geometry
  • Cho, E.,“De-Moivre Formula forQuaternions”, Appl. Math. Lett.,11(6): 33-35(1998). [5] Clifford,
  • W.,“Preliminary Sketch of
  • Biquaternions”, Proc. London Math. Soc.,4: 381- 395(1873).
  • Gungor, M.A., Sarduvan, M., “A Note on Dual Quaternions and Matrices of Dual Quaternions”, Scientia Magna, 7(1): 1-11(2011). [7] Gro, B.J., Trenkler, G., Troschke, S., “Quaternions: Futher Contributionsto a Matrix Oriented Approach”, Linear Algebra and its Appl., 326: 205-213(2001).
  • Jafari, M., Mortazaasl, H., Yayli, Y., “De Moivre's Formula for Matrices of Quaternions”, JP J. of Algebra, Number Theory and appl., 21(1):57-67 (2011).
  • Kabadayi, H., Yayli, Y., “De-Moivre's Formula for Dual Quaternions”, Kuwait J. Of Sci.&Tech., 38 (1):15-23(2011).
  • KotelNikov,A.P., “VintovoeSchislenie i Niko toriya Prilozheniyeevo k geometrie i mechaniki”, Kazan, (1895).
  • Ozdemir, M.,“The Roots of a Split Quaternion”, Applied Math. Lett., 22: 258-263(2009). [12] Study E.,“Von Den Bewegungenund Umlegungen”, Mathematische Annalen, 39: 441- 564(1891).
  • Ward,J.P., “Quaternions and Cayley Numbers Algebra and Applications”, Kluwer Academic Publishers, London, (1997).
  • Whittlesey, J., Whittlesey K., “Some Geometrical Generalizations of Euler's Formula”, Int. J. Of math. Edu. in Sci. &Tech., 21(3): 461-468(1990).
  • Yang, A.T., Freudensterin, F., “Application of Dual-number Quaternion Algebra to the Analysis of Spatial Mechanisms”, ASME Journal of applied Mechnics 86E (2):300-308(1964).
  • Yayli, Y.,“Homothetic Motions at E⁴”, Mech. Mach. Theory, 27( 3): 303-305(1992). [17] Zhang,
  • F.,Quaternions and Matrices of
  • Quaternions, Linea rAlgebra and its Appl., 251: 21-57(1997).
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Mehdi Jafarı

Mücahit Meral This is me

Yusuf Yaylı This is me

Publication Date January 2, 2014
Published in Issue Year 2013 Volume: 26 Issue: 4

Cite

APA Jafarı, M., Meral, M., & Yaylı, Y. (2014). Matrix Representation of Dual Quaternions. Gazi University Journal of Science, 26(4), 535-542.
AMA Jafarı M, Meral M, Yaylı Y. Matrix Representation of Dual Quaternions. Gazi University Journal of Science. January 2014;26(4):535-542.
Chicago Jafarı, Mehdi, Mücahit Meral, and Yusuf Yaylı. “Matrix Representation of Dual Quaternions”. Gazi University Journal of Science 26, no. 4 (January 2014): 535-42.
EndNote Jafarı M, Meral M, Yaylı Y (January 1, 2014) Matrix Representation of Dual Quaternions. Gazi University Journal of Science 26 4 535–542.
IEEE M. Jafarı, M. Meral, and Y. Yaylı, “Matrix Representation of Dual Quaternions”, Gazi University Journal of Science, vol. 26, no. 4, pp. 535–542, 2014.
ISNAD Jafarı, Mehdi et al. “Matrix Representation of Dual Quaternions”. Gazi University Journal of Science 26/4 (January 2014), 535-542.
JAMA Jafarı M, Meral M, Yaylı Y. Matrix Representation of Dual Quaternions. Gazi University Journal of Science. 2014;26:535–542.
MLA Jafarı, Mehdi et al. “Matrix Representation of Dual Quaternions”. Gazi University Journal of Science, vol. 26, no. 4, 2014, pp. 535-42.
Vancouver Jafarı M, Meral M, Yaylı Y. Matrix Representation of Dual Quaternions. Gazi University Journal of Science. 2014;26(4):535-42.