Research Article
BibTex RIS Cite

Theoretical Evaluation of Angle-Dependent Optical Properties of a Thin Film Solar Cell Including One-Dimension Photonic Crystals

Year 2022, , 164 - 172, 30.06.2022
https://doi.org/10.54287/gujsa.1129794

Abstract

The effective use of photonic-based integrated systems, whose optical properties can be tuned through light management engineering in optoelectronic devices, constitutes the backbone of today's technology. Especially in systems such as CdTe-based solar cells with well-known and high efficiency, one-dimensional photonic crystal designs emerge as an effective way to provide an electronic or optical improvement. With this intention, in this study, the optical spectra of the MgF2/MoO3 one-dimensional photonic crystal integrated into the CdTe solar cell to improve photon harvesting were investigated theoretically under both bottom and top illumination according to the incidence angle of the electromagnetic wave. The transfer matrix method was used to calculate the angle dependent optical spectra. Since the electromagnetic wave interacts directly with the photonic crystal, it has been observed that the optical properties are more dependent on the angle under the top illumination compared to the bottom one. For top illumination, up to 30°, there is no significant change in reflection in the photonic band gap, but reflection drops significantly at incidence angles greater than 30°. Also, increasing the angle indicates that the low wavelength tail of the photonic band gap shifts to shorter wavelengths and enters the visible region. In the photonic band gap, for angles greater than 45°, the probability of absorption increases significantly as more electromagnetic waves enter the structure. For the bottom illumination, there is no serious dependence on the angle of incidence. For 75°, there is an increase in reflection for all wavelengths and, therefore, a decrease in absorption.

References

  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Candan, İ., Efkere, H. İ., Özen, Y., & Özçelik, S. (2021a). Evaluation on output parameters of the inverted organic solar cells depending on transition-metal-oxide based hole-transporting materials. Optical Materials, 120, 111457. doi:10.1016/j.optmat.2021.111457
  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Özen, Y., Efkere, H. İ., Candan, İ, Emik, S., & Özçelik, S. (2021b). Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO3/Ag/MoO3 transparent top contact on optical and electrical properties. Scientific Reports, 11(1), 1-17. doi:10.1038/s41598-021-92539-8
  • Çetinkaya, Ç., Çokduygulular, E., Güzelçimen, F., & Kınacı, B. (2022). Functional optical design of thickness-optimized transparent conductive dielectric-metal-dielectric plasmonic structure. Scientific Reports, 12(1), 8822. doi:10.1038/s41598-022-13038-y
  • Green, M. A., Dunlop, E. D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Ho‐Baillie, A. W. Y. (2020). Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 28(1), 3-15. doi:10.1002/pip.3228
  • He, F., Yin, X., Li, J., Lin, S., Wu, L., Hao, X., Zhang, J., & Feng, L. (2020). Characterization of sputtered MoOx thin films with different oxygen content and their application as back contact in CdTe solar cells. Vacuum, 176, 109337. doi:10.1016/j.vacuum.2020.109337
  • Hu, Z., Zhang, F., An, Q., Zhang, M., Ma, X., Wang, J., Zhang, J., & Wang, J. (2018). Ternary Nonfullerene Polymer Solar Cells with a Power Conversion Efficiency of 11.6% by Inheriting the Advantages of Binary Cells. ACS Energy Letters, 3(3), 555-561. doi:10.1021/acsenergylett.8b00100
  • Li, F., Chen, C., Tan, F., Li, C., Yue, G., Shen, L., & Zhang, W. (2014). Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Research Letters, 9(1), 579. doi:10.1186/1556-276X-9-579
  • Lin, H., Xia, W., Wu, H. N., & Tang, C. W. (2010). CdS/CdTe solar cells with MoOx as back contact buffers. Applied Physics Letters, 97(12), 123504. doi:10.1063/1.3489414
  • Liu, W., Ma, H., & Walsh, A. (2019). Advance in photonic crystal solar cells. Renewable and Sustainable Energy Reviews, 116, 109436. doi:10.1016/j.rser.2019.109436
  • Lova, P., Manfredi, G., & Comoretto, D. (2018). Advances in Functional Solution Processed Planar 1D Photonic Crystals. Advanced Optical Materials, 6(24), 1800730. doi:10.1002/adom.201800730
  • Nguyen, D.-T., Vedraine, S., Cattin, L., Torchio, P., Morsli, M., Flory, F., & Bernède, J. C. (2012). Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures. Journal of Applied Physics, 112(6), 063505. doi:10.1063/1.4751334
  • Wang, Z., Zhang, C., Gao, R., Chen, D., Tang, S., Zhang, J., Wang, D., Lu, X., & Hao, Y. (2014). Improvement of transparent silver thin film anodes for organic solar cells with a decreased percolation threshold of silver. Solar Energy Materials and Solar Cells, 127, 193-200. doi:10.1016/j.solmat.2014.04.024
  • Xiong, L., Guo, Y., Wen, J., Liu, H., Yang, G., Qin, P., & Fang, G. (2018). Review on the Application of SnO2 in Perovskite Solar Cells. Advanced Functional Materials, 28(35), 1802757. doi:10.1002/adfm.201802757
  • Yablonovitch, E., Gmitter, T. J., & Leung, K.-M. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67(17), 2295-2298. doi:10.1103/PhysRevLett.67.2295
  • Zhang, J., Xu, G., Tao, F., Zeng, G., Zhang, M., Yang, Y. M., Li, Y., & Li, Y. (2019). Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100. Advanced Materials, 31(10), 1807159. doi:10.1002/adma.201807159
Year 2022, , 164 - 172, 30.06.2022
https://doi.org/10.54287/gujsa.1129794

Abstract

References

  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Candan, İ., Efkere, H. İ., Özen, Y., & Özçelik, S. (2021a). Evaluation on output parameters of the inverted organic solar cells depending on transition-metal-oxide based hole-transporting materials. Optical Materials, 120, 111457. doi:10.1016/j.optmat.2021.111457
  • Çetinkaya, Ç., Çokduygulular, E., Kınacı, B., Güzelçimen, F., Özen, Y., Efkere, H. İ., Candan, İ, Emik, S., & Özçelik, S. (2021b). Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO3/Ag/MoO3 transparent top contact on optical and electrical properties. Scientific Reports, 11(1), 1-17. doi:10.1038/s41598-021-92539-8
  • Çetinkaya, Ç., Çokduygulular, E., Güzelçimen, F., & Kınacı, B. (2022). Functional optical design of thickness-optimized transparent conductive dielectric-metal-dielectric plasmonic structure. Scientific Reports, 12(1), 8822. doi:10.1038/s41598-022-13038-y
  • Green, M. A., Dunlop, E. D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Ho‐Baillie, A. W. Y. (2020). Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 28(1), 3-15. doi:10.1002/pip.3228
  • He, F., Yin, X., Li, J., Lin, S., Wu, L., Hao, X., Zhang, J., & Feng, L. (2020). Characterization of sputtered MoOx thin films with different oxygen content and their application as back contact in CdTe solar cells. Vacuum, 176, 109337. doi:10.1016/j.vacuum.2020.109337
  • Hu, Z., Zhang, F., An, Q., Zhang, M., Ma, X., Wang, J., Zhang, J., & Wang, J. (2018). Ternary Nonfullerene Polymer Solar Cells with a Power Conversion Efficiency of 11.6% by Inheriting the Advantages of Binary Cells. ACS Energy Letters, 3(3), 555-561. doi:10.1021/acsenergylett.8b00100
  • Li, F., Chen, C., Tan, F., Li, C., Yue, G., Shen, L., & Zhang, W. (2014). Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Research Letters, 9(1), 579. doi:10.1186/1556-276X-9-579
  • Lin, H., Xia, W., Wu, H. N., & Tang, C. W. (2010). CdS/CdTe solar cells with MoOx as back contact buffers. Applied Physics Letters, 97(12), 123504. doi:10.1063/1.3489414
  • Liu, W., Ma, H., & Walsh, A. (2019). Advance in photonic crystal solar cells. Renewable and Sustainable Energy Reviews, 116, 109436. doi:10.1016/j.rser.2019.109436
  • Lova, P., Manfredi, G., & Comoretto, D. (2018). Advances in Functional Solution Processed Planar 1D Photonic Crystals. Advanced Optical Materials, 6(24), 1800730. doi:10.1002/adom.201800730
  • Nguyen, D.-T., Vedraine, S., Cattin, L., Torchio, P., Morsli, M., Flory, F., & Bernède, J. C. (2012). Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures. Journal of Applied Physics, 112(6), 063505. doi:10.1063/1.4751334
  • Wang, Z., Zhang, C., Gao, R., Chen, D., Tang, S., Zhang, J., Wang, D., Lu, X., & Hao, Y. (2014). Improvement of transparent silver thin film anodes for organic solar cells with a decreased percolation threshold of silver. Solar Energy Materials and Solar Cells, 127, 193-200. doi:10.1016/j.solmat.2014.04.024
  • Xiong, L., Guo, Y., Wen, J., Liu, H., Yang, G., Qin, P., & Fang, G. (2018). Review on the Application of SnO2 in Perovskite Solar Cells. Advanced Functional Materials, 28(35), 1802757. doi:10.1002/adfm.201802757
  • Yablonovitch, E., Gmitter, T. J., & Leung, K.-M. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67(17), 2295-2298. doi:10.1103/PhysRevLett.67.2295
  • Zhang, J., Xu, G., Tao, F., Zeng, G., Zhang, M., Yang, Y. M., Li, Y., & Li, Y. (2019). Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100. Advanced Materials, 31(10), 1807159. doi:10.1002/adma.201807159
There are 15 citations in total.

Details

Primary Language English
Journal Section Physics
Authors

Çağlar Çetinkaya 0000-0001-9372-7847

Publication Date June 30, 2022
Submission Date June 12, 2022
Published in Issue Year 2022

Cite

APA Çetinkaya, Ç. (2022). Theoretical Evaluation of Angle-Dependent Optical Properties of a Thin Film Solar Cell Including One-Dimension Photonic Crystals. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 164-172. https://doi.org/10.54287/gujsa.1129794