Araştırma Makalesi
BibTex RIS Kaynak Göster

BIM tabanlı BEM Süreci ile Yüksek Enerji Performanslı Bina Tasarımının İlk Aşamasında Üretken Tasarım Yaklaşımı

Yıl 2025, Cilt: 13 Sayı: 2, 263 - 277, 30.06.2025

Öz

Günümüzde yüksek enerji performansına sahip binaların tasarımı, erken tasarım aşamalarında alınan kararların önemini artırmış ve bu bağlamda Bina Bilgi Modellemesi (BIM) tabanlı Bina Enerji Modellemesi (BEM) yaklaşımlarının benimsenmesini teşvik etmiştir. Bu çalışma, yüksek enerji performanslı bina tasarımı sürecinde BIM (Bina Bilgi Modellemesi) tabanlı BEM (Bina Enerji Modellemesi) ile entegre edilen üretken tasarım yaklaşımını incelemektedir. Soğuk-kuru iklim koşullarına uygun olarak geliştirilen önerilen yöntem, erken tasarım aşamasında mimarların farklı bina formlarını üretmesini, bu formları enerji performansı açısından analiz etmesini ve optimize edilmiş çözümleri belirlemesini mümkün kılmaktadır. Revit-Dynamo ortamında geliştirilen algoritmalar aracılığıyla, öncelikle biçim faktörü ve kat alanı kriterlerine göre bina formları oluşturulmuş; ardından, cephe tasarımı özelinde pencere yerleşimleri ve WWR (Window-to-Wall Ratio) oranları parametrik olarak tanımlanmıştır. Elde edilen alternatifler, Green Building Studio ile enerji simülasyonlarına tabi tutularak EUI (Enerji Kullanım Yoğunluğu) değerlerine göre değerlendirilmiştir. Tasarım alternatifleri, mimarın hedeflerine göre sıralanabilir şekilde görselleştirilmiş ve karar verme süreci desteklenmiştir. Bulgular, düşük biçim faktörüne sahip kompakt formların ve cephe bazlı pencere optimizasyonlarının enerji verimliliği üzerinde belirleyici bir etkiye sahip olduğunu göstermektedir. Bu kapsamda, geliştirilen çerçeve, erken tasarım aşamasında sürdürülebilir ve veri odaklı bina tasarımı için etkili bir araç olarak öne çıkmaktadır.

Kaynakça

  • [1] AlAnzi, A., Seo, D., & Krarti, M. (2009). Impact of building shape on thermal performance of office buildings in Kuwait. Energy Conversion and Management, 50(3), 822-828.
  • [2] Boumaraf, H. (2022). A System Proposal for Generative Design Processes and Space Analysis in Architecture. Anadolu University (Turkey),
  • [3] Cagan, J., Campbell, M. I., Finger, S., & Tomiyama, T. (2005). A framework for computational design synthesis: model and applications.
  • [4] Chase, S. C. (2005). Generative design tools for novice designers: Issues for selection. Automation in construction, 14(6), 689-698. [5] Chen, J., Wang, D., Shao, Z., Zhang, X., Ruan, M., Li, H., & Li, J. (2023). Using artificial intelligence to generate master-quality architectural designs from text descriptions. Buildings, 13(9), 2285.
  • [6] Chen, Z., Deng, Z., Chong, A., & Chen, Y. (2023). AutoBPS-BIM: A toolkit to transfer BIM to BEM for load calculation and chiller design optimization. Paper presented at the Building Simulation.
  • [7] Chien, S.-F., & Flemming, U. (2002). Design space navigation in generative design systems. Automation in construction, 11(1), 1-22.
  • [8] Cho, C.-S., Chen, D., & Woo, S. (2012). Building information modeling (BIM)-Based design of energy efficient buildings. Journal of KIBIM, 2(1), 1-6.
  • [9] Demir, G., & Tanyıldızı, E. (2017). Optimizasyon Problemlerinin Çözümünde Sinüs Kosinüs Algoritması (SKA)’nın Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 225-236.
  • [10] Depecker, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. Building and Environment, 36(5), 627-635.
  • [11] Elbeltagi, E., Wefki, H., Abdrabou, S., Dawood, M., & Ramzy, A. J. J. o. B. E. (2017). Visualized strategy for predicting buildings energy consumption during early design stage using parametric analysis. 13, 127-136.
  • [12] Gao, H., Koch, C., & Wu, Y. J. A. e. (2019). Building information modelling based building energy modelling: A review. 238, 320-343.
  • [13] Granadeiro, V., Duarte, J. P., Correia, J. R., & Leal, V. M. (2013). Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Automation in construction, 32, 196-209.
  • [14] Gu, N., & Amini Behbahani, P. (2021). Shape grammars: A key generative design algorithm. In Handbook of the Mathematics of the Arts and Sciences (pp. 1385-1405): Springer.
  • [15] Gürsel Dino, İ. (2012). Creative design exploration by parametric generative systems in architecture.
  • [16] Jalaei, F., & Jrade, A. (2014). An automated BIM model to conceptually design, analyze, simulate, and assess sustainable building projects. Journal of Construction Engineering, 2014.
  • [17] Kamari, A., Kotula, B. M., & Schultz, C. P. L. (2022). A BIM-based LCA tool for sustainable building design during the early design stage. Smart and Sustainable Built Environment, 11(2), 217-244. doi:10.1108/SASBE-09-2021-0157
  • [18] Kamel, E., & Memari, A. M. (2019). Review of BIM's application in energy simulation: Tools, issues, and solutions. Automation in construction, 97, 164-180.
  • [19] Ramaji, I. J., Messner, J. I., & Mostavi, E. J. J. o. C. i. C. E. (2020). IFC-Based BIM-to-BEM Model Transformation. 34(3), 04020005.
  • [20] Ratajczak, J., Siegele, D., & Niederwieser, E. (2023). Maximizing Energy Efficiency and Daylight Performance in Office Buildings in BIM through RBFOpt Model-Based Optimization: The GENIUS Project. Buildings, 13(7), 1790.
  • [21] Reichard, G., & Papamichael, K. (2005). Decision-making through performance simulation and code compliance from the early schematic phases of building design. Automation in construction, 14(2), 173-180.
  • [22] Rezasoroush, A., & Amani, N. (2021). BIM-based optimum design and energy performance assessment of residential buildings. [23] Schlueter, A., & Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in construction, 18(2), 153-163.
  • [24] Shea, K., Aish, R., & Gourtovaia, M. (2005). Towards integrated performance-driven generative design tools. Automation in construction, 14(2), 253-264.
  • [25] Stumpf, A., Kim, H., & Jenicek, E. (2009). Early design energy analysis using bims (building information models). Paper presented at the Construction Research Congress 2009: Building a Sustainable Future.
  • [26] Utkucu, D., & Sözer, H. (2023). Building performance optimization throughout the design–decision process with a holistic approach. Journal of Architectural Engineering, 29(1), 04022034.
  • [27] Villaggi, L., & Nagy, D. (2019). Generative Design for Architectural Space Planning: The Case of the Autodesk University 2017 Layout. In.
  • [28] Wang, C., Cho, Y. K., & Kim, C. (2015). Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in construction, 56, 1-13.
  • [29] Wei, Y., Choi, H., & Lei, Z. (2022). A generative design approach for modular construction in congested urban areas. Smart and sustainable built environment, 11(4), 1163-1181. [30] Zang, Z., & Ding, W. (2024). Eco-Centric Generative Design Workflow: Extending Sustainability in Architecture. Paper presented at the International Symposium on World Ecological Design.

Generative Design Approach in the Early Stage of High-Energy Performance Building Design with BIM-Based BEM Process

Yıl 2025, Cilt: 13 Sayı: 2, 263 - 277, 30.06.2025

Öz

Nowadays, the design of buildings with high energy performance has increased the importance of decisions made in the early design phases and, in this context, has encouraged the adoption of Building Information Modelling (BIM) based Building Energy Modelling (BEM) approaches. This study investigates the productive design approach integrated with BIM (Building Information Modelling) based BEM (Building Energy Modelling) in the process of high energy performance building design. The proposed method, developed for cold-dry climate conditions, enables architects to generate different building forms, analyse these forms in terms of energy performance, and identify optimised solutions in the early design phase. Using algorithms developed in the Revit-Dynamo environment, firstly, building forms are generated according to form factor and floor area criteria; then, window placements and WWR (Window-to-Wall Ratio) ratios are parametrically defined for facade design. The obtained alternatives were subjected to energy simulations with Green Building Studio and evaluated according to EUI (Energy Use Intensity) values. The design alternatives were visualised so that they could be ranked according to the architect's objectives, and the decision-making process was supported. The findings show that compact forms with low form factor and facade-based window optimisations have a decisive impact on energy efficiency. In this context, the developed framework is an effective tool for sustainable and data-driven building design in the early design phase.

Kaynakça

  • [1] AlAnzi, A., Seo, D., & Krarti, M. (2009). Impact of building shape on thermal performance of office buildings in Kuwait. Energy Conversion and Management, 50(3), 822-828.
  • [2] Boumaraf, H. (2022). A System Proposal for Generative Design Processes and Space Analysis in Architecture. Anadolu University (Turkey),
  • [3] Cagan, J., Campbell, M. I., Finger, S., & Tomiyama, T. (2005). A framework for computational design synthesis: model and applications.
  • [4] Chase, S. C. (2005). Generative design tools for novice designers: Issues for selection. Automation in construction, 14(6), 689-698. [5] Chen, J., Wang, D., Shao, Z., Zhang, X., Ruan, M., Li, H., & Li, J. (2023). Using artificial intelligence to generate master-quality architectural designs from text descriptions. Buildings, 13(9), 2285.
  • [6] Chen, Z., Deng, Z., Chong, A., & Chen, Y. (2023). AutoBPS-BIM: A toolkit to transfer BIM to BEM for load calculation and chiller design optimization. Paper presented at the Building Simulation.
  • [7] Chien, S.-F., & Flemming, U. (2002). Design space navigation in generative design systems. Automation in construction, 11(1), 1-22.
  • [8] Cho, C.-S., Chen, D., & Woo, S. (2012). Building information modeling (BIM)-Based design of energy efficient buildings. Journal of KIBIM, 2(1), 1-6.
  • [9] Demir, G., & Tanyıldızı, E. (2017). Optimizasyon Problemlerinin Çözümünde Sinüs Kosinüs Algoritması (SKA)’nın Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 225-236.
  • [10] Depecker, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. Building and Environment, 36(5), 627-635.
  • [11] Elbeltagi, E., Wefki, H., Abdrabou, S., Dawood, M., & Ramzy, A. J. J. o. B. E. (2017). Visualized strategy for predicting buildings energy consumption during early design stage using parametric analysis. 13, 127-136.
  • [12] Gao, H., Koch, C., & Wu, Y. J. A. e. (2019). Building information modelling based building energy modelling: A review. 238, 320-343.
  • [13] Granadeiro, V., Duarte, J. P., Correia, J. R., & Leal, V. M. (2013). Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Automation in construction, 32, 196-209.
  • [14] Gu, N., & Amini Behbahani, P. (2021). Shape grammars: A key generative design algorithm. In Handbook of the Mathematics of the Arts and Sciences (pp. 1385-1405): Springer.
  • [15] Gürsel Dino, İ. (2012). Creative design exploration by parametric generative systems in architecture.
  • [16] Jalaei, F., & Jrade, A. (2014). An automated BIM model to conceptually design, analyze, simulate, and assess sustainable building projects. Journal of Construction Engineering, 2014.
  • [17] Kamari, A., Kotula, B. M., & Schultz, C. P. L. (2022). A BIM-based LCA tool for sustainable building design during the early design stage. Smart and Sustainable Built Environment, 11(2), 217-244. doi:10.1108/SASBE-09-2021-0157
  • [18] Kamel, E., & Memari, A. M. (2019). Review of BIM's application in energy simulation: Tools, issues, and solutions. Automation in construction, 97, 164-180.
  • [19] Ramaji, I. J., Messner, J. I., & Mostavi, E. J. J. o. C. i. C. E. (2020). IFC-Based BIM-to-BEM Model Transformation. 34(3), 04020005.
  • [20] Ratajczak, J., Siegele, D., & Niederwieser, E. (2023). Maximizing Energy Efficiency and Daylight Performance in Office Buildings in BIM through RBFOpt Model-Based Optimization: The GENIUS Project. Buildings, 13(7), 1790.
  • [21] Reichard, G., & Papamichael, K. (2005). Decision-making through performance simulation and code compliance from the early schematic phases of building design. Automation in construction, 14(2), 173-180.
  • [22] Rezasoroush, A., & Amani, N. (2021). BIM-based optimum design and energy performance assessment of residential buildings. [23] Schlueter, A., & Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in construction, 18(2), 153-163.
  • [24] Shea, K., Aish, R., & Gourtovaia, M. (2005). Towards integrated performance-driven generative design tools. Automation in construction, 14(2), 253-264.
  • [25] Stumpf, A., Kim, H., & Jenicek, E. (2009). Early design energy analysis using bims (building information models). Paper presented at the Construction Research Congress 2009: Building a Sustainable Future.
  • [26] Utkucu, D., & Sözer, H. (2023). Building performance optimization throughout the design–decision process with a holistic approach. Journal of Architectural Engineering, 29(1), 04022034.
  • [27] Villaggi, L., & Nagy, D. (2019). Generative Design for Architectural Space Planning: The Case of the Autodesk University 2017 Layout. In.
  • [28] Wang, C., Cho, Y. K., & Kim, C. (2015). Automatic BIM component extraction from point clouds of existing buildings for sustainability applications. Automation in construction, 56, 1-13.
  • [29] Wei, Y., Choi, H., & Lei, Z. (2022). A generative design approach for modular construction in congested urban areas. Smart and sustainable built environment, 11(4), 1163-1181. [30] Zang, Z., & Ding, W. (2024). Eco-Centric Generative Design Workflow: Extending Sustainability in Architecture. Paper presented at the International Symposium on World Ecological Design.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Bilgi Modelleme ve Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Nahide Nanvai Farkhad 0000-0002-7962-4785

Figen Beyhan 0000-0002-4287-1037

Gönderilme Tarihi 25 Nisan 2025
Kabul Tarihi 23 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Nanvai Farkhad, N., & Beyhan, F. (2025). BIM tabanlı BEM Süreci ile Yüksek Enerji Performanslı Bina Tasarımının İlk Aşamasında Üretken Tasarım Yaklaşımı. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 13(2), 263-277.