Araştırma Makalesi
BibTex RIS Kaynak Göster

Ön Karışımlı Bir Yakıcıda Kok Fırını Gazı Yanma Karakteristiklerinin Sayısal Olarak İncelenmesi

Yıl 2022, , 135 - 152, 30.03.2022
https://doi.org/10.29109/gujsc.1059160

Öz

Her geçen gün daha da artan enerji ihtiyacımızı karşılamak için ülkemizde de çokça bulunan kömür rezervini doğrudan kullanmak, gerek taşınmasının zor olması, gerek büyük hacimli yakıcıya ihtiyaç duyması gerekse de kül, cüruf gibi atıklar bırakması ve özellikle kirletici emisyonlarının fazla olması nedeniyle doğrudan kullanılması elverişli olmayabilir. Oksijensiz ortamda ısıl işleme maruz kalan kömürden elde edilen gazlar ise hem taşınması kolay, hem basit ve küçük yakıcıya ihtiyaç duyması hem de yakma sırasında daha az havaya ihtiyaç duyması ve özellikle daha az kirletici emisyon oluşturması nedeniyle bu gaz yakıtın tüketilmesi daha uygun olacaktır. Bu çalışmada, kömürün koklaştırma yan ürünü olan kok fırını gazının, ön-karışımlı olarak yanma performansı ve emisyon karakteristikleri sayısal olarak incelenmiştir. Kok fırını gazını yakmak için yakıtı ve havayı önceden karıştırırarak yanma odasına gönderen ön-karışımlı bir yakıcı kullanılmıştır. Yanma koşullarında fakir karışım bölgesinde kalınarak hava fazlalık katsayısı λ=1,2 ve λ=1,5 koşullarında yakıt-hava karışımı ön-karışımlı olarak tüketilmiştir. Çalışmada 10 kW güce karşılık gelen yakıt miktarı yanma odasına gönderilmiştir. Ölçümlerin yapıldığı deney düzeneği ANSYS-Fluent ticari kodu ile üç boyutlu olarak modellenmiştir. Yanma modeli olarak GRI-Mech 3.0 kimyasal kinetiği yardımıyla kok fırını gazı ve yanma sonu NO_X tahminleri için 21, 27, 78, 162 ve 239 basamaklı reaksiyonlar oluşturulmasıyla Eddy Dissipation Concept yanma modeline entegre edilerek yanma modellenmesi gerçekleştirilmiştir. Radyasyon modeli olarak P-1 seçilmiş olup, türbülans modelinin etkisini belirlemek için de 3 farklı türbülans modeli kullanılmıştır. Elde edilen sıcaklık ve NO_X profilleri deneysel verilerle karşılaştırılmış ve oldukça iyi bir uyum olduğu saptanmış, 162 basamaklı reaksiyonun yeterli olduğu görülmüştür.

Kaynakça

  • Karyeyen S. (2016). Geliştirilen Bir Yakıcıda Kömür Gazlarının Yanma Karakteristiklerinin Deneysel ve Sayısal Olarak Araştırılması, Doktara Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • İlbas M., Karyeyen S., Premixed Turbulent Combustion of Hydrogen Containing Fuels - An Experimental Study, 24th « Journées d’Etude » of the Belgian Section of the Combustion Institute. Louvain-la-Neuve, Belgium, May, 19-20, 2016.
  • Wang L., Jiang Y., Qiu R., Experimental Study Of Combustion Inhibition By Trimethyl Phosphate In Turbulent Premixed Methane/Air Flames Using OH-PLIF, Journal Of Fuel 294(2021) 120324.
  • Laguillo S., Ochoa J.S., Tizné E., Pina A., Ballester J., Ortiz A., CO Emissions And Temperature Analysis From An Experimental And Numerical Study Of Partially Premixed Methane Flames İmpinging Onto A Cooking Pot, Journal Of Natural Gas Science And Engineering 88(2021) 103771.
  • Zhen H.S., Miao J., Leung C.W., Cheung C.S., Huang Z.H., A Study On The Effects Of Air Preheat On The Combustion And Heat Transfer Characteristics Of Bunsen Flames, Journal Of Fuel 184(2016) 50-58.
  • Salem E. (2018). Numerical Simulations Of Premixed Flames Of Multi Component Fuels/Air Mixtures And Their Aplications, Theses And Dissertations Mechanical Engineering.132, Lexington.
  • Guo L., Zhai M., Shen Q., Guo H., Dong P., Effect Of Hydrogen Addition On The Ionization Of Partially Premixed Methane Flame, Journal Of Fuel, 285(2021) 119141.
  • Jiang X., Greco A., Mira D., Effects Of Fuel Composition On Biogas Combustion In Premixed Laminar Flames, Energy Procedia 105(2017) 1058-1062.
  • Jόzsa V., Csemẚny D., Hidegh G., Darwish M., Distributed Combustion Of Diesel-Butanol Fuel Blends In A Mixture Temperature-Conrolled Burner, Fuel 307(2022) 121840.
  • Gupta A. K., Khalil A. E. E., Towards Colorless Distributed Combustion Regime, Fuel 195(2017) 113-122.
  • Telli Z. (1984). Yakıtlar ve Yanma, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Yayınları, Isparta.
  • Nguyen T.H., Kim S., Park J., Jung S., Kim S., CFD-CRN Validation Study For NOx Emission Prediction In Lean Premixed Gas Turbine Combustor, Journal Of Mechanical Science And Technology 31 (10) (2017) 4933-4942.
  • Ilbas M. (1997). Studies Of Ultra Low NOx Burners, PhD Thesis, School Of Engineering, University Of Wales, Cardiff, UK, 10-28.
  • Tunçer O., Hidrojenle Zenginleştirilmiş Metan Yakıtının Alev Hızları ve Emisyon Değerlerinin Kimyasal Kinetik Analizi, Iıs Bilimi ve Tekniği Dergisi 29,2.29-42, 2009.
  • Yılmaz B. (2010). Computational Analysis And Experimental Verification Of Premixed Combustion Of Hydrogen Methane/Air Mixtures, Thesis For The Degree Of Doctor Of Philosophy, Marmara University, Institute For Graduate Studies In Pure And Applied Sciences, İstanbul.
  • Sepman A.V., Mokhov A.V., Levinsky H.B., The Effect Of Hydrogen Addition On NO Formation In Atmospheric-Pressure, Fuel-Rich-Premixed, Burner-Stabilized Methane, Ethane And Propane Flames, International Journal Of Hydrogen Energy 36 (2011) 4474-4481.
  • Feng R., Gruber A., Chen J.H., Valiev D.M., Influence Of Gas Expansion On The Propagation Of A Premixed Flame In A Spatially Periodic Shear Flow, Journal Of Combustion And Flame 227(2021) 421-427.
  • Pashchenko D., Numerical Investigation Of High Temperature Synthesis Gas Premixed Combustion Via ANSYS Fluent, MATEC Web Of Conferences 145, 03012 (2018).
  • Yılmaz İ., Yılmaz H., Cam O., Ilbas M., Combustion Characteristics Of Premixed Hydrogen/Air Flames In A Geometrically Modified Micro Combustor, Journal Of Fuel 217 (2018) 536-543.
  • Karyeyen S., Ilbas M., Experimental And Numerical Analysis Of Turbulent Premixed Combustion Of Low Calorific Value Coal Gases In A Generated Premixed Burner, Journal Of Fuel 220(2018) 586-598.
  • Gupta A.K., Arghode V.K., Bryden K.M., High Intensity Colorless Distributed Combustion For Ultra Low Emissions And Enhanced Performance, Applied Energy 92 (2012) 822-830.

Numerical Investigation Of Coke Oven Gas Combustion Characteristics In A Premixed Burner

Yıl 2022, , 135 - 152, 30.03.2022
https://doi.org/10.29109/gujsc.1059160

Öz

In order to meet our ever-increasing energy needs, it may not be convenient to directly use the coal reserves, which are abundant in our country, because it is difficult to transport, requires large volumes of combustor, leaves wastes such as ash and slag, and especially due to the high pollutant emissions. Gases obtained from coal exposed to heat treatment in an oxygen-free environment, on the other hand, would be more appropriate to consume because it is easy to transport, requires a simple and small burner, and requires less air during combustion, and especially forms less pollutant emissions. In this study, the premixed combustion performance and emission characteristics of coke oven gas, which is a by-product of coal coking, were numerically investigated. A premixed burner pre-mixing the fuel and air, and introducing the mixture to the combustion chamber was used to burn the coke oven gas. The fuel-air mixture was consumed as premixed at excess air ratios of λ=1,2 and λ=1,5 under lean combustion conditions. In the study presented, the amount of fuel corresponding to a power of 10 kW was introduced to the combustion chamber. The experimental setup in which the measurements were made was modeled as three-dimensional through a commercial code ANSYS-Fluent. Combustion modeling was carried out by integrating the Eddy Dissipation Concept into the combustion model by creating 21, 27, 78, 162 and 239-step reactions for the coke oven gas and end-of-combustion NO_X estimations with the help of GRI-Mech 3.0 chemical kinetics as a combustion model. P-1 was chosen as the radiation model, and 3 different turbulence models were used to determine the effect of the turbulence model. The obtained temperature and NO_X profiles were compared with the experimental data and it was determined that there was a satisfactorily good agreement, it was seen that the 162-step reaction was sufficient.

Kaynakça

  • Karyeyen S. (2016). Geliştirilen Bir Yakıcıda Kömür Gazlarının Yanma Karakteristiklerinin Deneysel ve Sayısal Olarak Araştırılması, Doktara Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • İlbas M., Karyeyen S., Premixed Turbulent Combustion of Hydrogen Containing Fuels - An Experimental Study, 24th « Journées d’Etude » of the Belgian Section of the Combustion Institute. Louvain-la-Neuve, Belgium, May, 19-20, 2016.
  • Wang L., Jiang Y., Qiu R., Experimental Study Of Combustion Inhibition By Trimethyl Phosphate In Turbulent Premixed Methane/Air Flames Using OH-PLIF, Journal Of Fuel 294(2021) 120324.
  • Laguillo S., Ochoa J.S., Tizné E., Pina A., Ballester J., Ortiz A., CO Emissions And Temperature Analysis From An Experimental And Numerical Study Of Partially Premixed Methane Flames İmpinging Onto A Cooking Pot, Journal Of Natural Gas Science And Engineering 88(2021) 103771.
  • Zhen H.S., Miao J., Leung C.W., Cheung C.S., Huang Z.H., A Study On The Effects Of Air Preheat On The Combustion And Heat Transfer Characteristics Of Bunsen Flames, Journal Of Fuel 184(2016) 50-58.
  • Salem E. (2018). Numerical Simulations Of Premixed Flames Of Multi Component Fuels/Air Mixtures And Their Aplications, Theses And Dissertations Mechanical Engineering.132, Lexington.
  • Guo L., Zhai M., Shen Q., Guo H., Dong P., Effect Of Hydrogen Addition On The Ionization Of Partially Premixed Methane Flame, Journal Of Fuel, 285(2021) 119141.
  • Jiang X., Greco A., Mira D., Effects Of Fuel Composition On Biogas Combustion In Premixed Laminar Flames, Energy Procedia 105(2017) 1058-1062.
  • Jόzsa V., Csemẚny D., Hidegh G., Darwish M., Distributed Combustion Of Diesel-Butanol Fuel Blends In A Mixture Temperature-Conrolled Burner, Fuel 307(2022) 121840.
  • Gupta A. K., Khalil A. E. E., Towards Colorless Distributed Combustion Regime, Fuel 195(2017) 113-122.
  • Telli Z. (1984). Yakıtlar ve Yanma, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Yayınları, Isparta.
  • Nguyen T.H., Kim S., Park J., Jung S., Kim S., CFD-CRN Validation Study For NOx Emission Prediction In Lean Premixed Gas Turbine Combustor, Journal Of Mechanical Science And Technology 31 (10) (2017) 4933-4942.
  • Ilbas M. (1997). Studies Of Ultra Low NOx Burners, PhD Thesis, School Of Engineering, University Of Wales, Cardiff, UK, 10-28.
  • Tunçer O., Hidrojenle Zenginleştirilmiş Metan Yakıtının Alev Hızları ve Emisyon Değerlerinin Kimyasal Kinetik Analizi, Iıs Bilimi ve Tekniği Dergisi 29,2.29-42, 2009.
  • Yılmaz B. (2010). Computational Analysis And Experimental Verification Of Premixed Combustion Of Hydrogen Methane/Air Mixtures, Thesis For The Degree Of Doctor Of Philosophy, Marmara University, Institute For Graduate Studies In Pure And Applied Sciences, İstanbul.
  • Sepman A.V., Mokhov A.V., Levinsky H.B., The Effect Of Hydrogen Addition On NO Formation In Atmospheric-Pressure, Fuel-Rich-Premixed, Burner-Stabilized Methane, Ethane And Propane Flames, International Journal Of Hydrogen Energy 36 (2011) 4474-4481.
  • Feng R., Gruber A., Chen J.H., Valiev D.M., Influence Of Gas Expansion On The Propagation Of A Premixed Flame In A Spatially Periodic Shear Flow, Journal Of Combustion And Flame 227(2021) 421-427.
  • Pashchenko D., Numerical Investigation Of High Temperature Synthesis Gas Premixed Combustion Via ANSYS Fluent, MATEC Web Of Conferences 145, 03012 (2018).
  • Yılmaz İ., Yılmaz H., Cam O., Ilbas M., Combustion Characteristics Of Premixed Hydrogen/Air Flames In A Geometrically Modified Micro Combustor, Journal Of Fuel 217 (2018) 536-543.
  • Karyeyen S., Ilbas M., Experimental And Numerical Analysis Of Turbulent Premixed Combustion Of Low Calorific Value Coal Gases In A Generated Premixed Burner, Journal Of Fuel 220(2018) 586-598.
  • Gupta A.K., Arghode V.K., Bryden K.M., High Intensity Colorless Distributed Combustion For Ultra Low Emissions And Enhanced Performance, Applied Energy 92 (2012) 822-830.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Sezgin Taşdemir 0000-0002-8493-4868

Serhat Karyeyen 0000-0002-8383-5518

Mustafa İlbaş 0000-0001-6668-1484

Yayımlanma Tarihi 30 Mart 2022
Gönderilme Tarihi 17 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Taşdemir, S., Karyeyen, S., & İlbaş, M. (2022). Ön Karışımlı Bir Yakıcıda Kok Fırını Gazı Yanma Karakteristiklerinin Sayısal Olarak İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(1), 135-152. https://doi.org/10.29109/gujsc.1059160

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526