Araştırma Makalesi
BibTex RIS Kaynak Göster

AISI 316L Paslanmaz Çeliğin Tornalanmasında Takım Geometrisi ve İşleme Parametrelerinin Yüzey Bütünlüğü Özelliklerine Etkisinin Taguchi Yöntemi ile Analizi

Yıl 2022, , 391 - 407, 30.09.2022
https://doi.org/10.29109/gujsc.1149757

Öz

Bu çalışmada, kuru frezeleme koşullarında üç farklı takım geometrisine sahip CVD TiAlN/Al2O3/TiCN kaplı karbür uçlar kullanılarak AISI 316L’nin yüzey bütünlük özelliklerini değerlendirmek için Taguchi yöntemi uygulanmıştır. Bir CNC tornada ortogonal dizili bir deneysel tasarım olan L18 (2x3x3x3) kullanılarak çeşitli deneyler yapılmıştır. İşleme parametrelerinin ortalama yüzey pürüzlülüğü, çevresel ve eksenel yüzey kalıntı gerilmeleri ve işleme sertleşmesi derecesi üzerindeki etkilerini belirlemek için varyans analizi (ANOVA) kullanıldı. İşleme parametreleri olarak kesme derinliği, kesici takım geometrisi, kesme hızı ve ilerleme hızı seçilmiştir. İşleme parametrelerinin kalite özellikleri üzerinde farklı etkileri olduğu görülmüştür. Kesme derinliği, yüzey pürüzlülüğü üzerinde nispeten etkili bir parametreydi ve diğer kalite özellikleri üzerinde önemli bir etkisi yoktu. Takım geometrisi ortalama yüzey pürüzlülüğünü etkilemedi. Ancak sırasıyla sertleşme derecesi, çevresel ve eksenel yüzey kalıntı gerilmeleri üzerinde daha etkili olmuştur. Kesme hızının sırasıyla eksenel ve çevresel yüzey kalıntı gerilmeleri ve sertleşme derecesi üzerinde daha önemli bir etkiye sahip olduğu belirlendi. İlerleme hızı, yüzey pürüzlülüğü üzerinde çok yüksek bir etkiye sahipken, sırasıyla çevresel ve eksenel yüzey kalıntı gerilmeleri ve sertleşme derecesi üzerinde de önemli bir etkiye sahip olduğu görülmüştür.

Destekleyen Kurum

Gazi Üniversitesi

Proje Numarası

07/2009-33

Teşekkür

Bu çalışma, “Gazi Üniversitesi – Bilimsel Araştırma Projeleri” kapsamında 07/2009-33 numaralı proje ile desteklenmiştir.

Kaynakça

  • [1] Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels – a review. Int. J. Machining and Machinability of Materials (2012), 12 (1/2), pp.178–192. https://doi.org/10.1504/IJMMM.2012.048564.
  • [2] Gandarias A, De Lacalle LNL, Aizpitarte X, Lamikiz A. Study of the performance of the turning and drilling of austenitic stainless steels using two coolant techniques. International Journal of Machining and Machinability of Materials (2008), 3 (1–2), pp.1–17. https://doi.org/10.1504/IJMMM.2008.017621. [3] Youssef HA. Machining of Stainless Steels and Super Alloys Traditional and Non-traditional Techniques. UK: John Wiley & Sons, Ltd, 2016.
  • [4] Gürbüz, H. AISI 316l Çeliğin İşlenmesinde Kesici Takım Geometrisi Ve Kaplama Tiplerinin Yüzey Bütünlüğü Üzerindeki Etkilerinin Araştırılması. Doktora tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2012.
  • [5] Gürbüz H, Şeker U. Kafkas F. Investigation of effects of cutting insert rake face forms on surface integrity. Int. J. Adv. Manuf. Technol. (2017), 90, pp.3507–3522. https://doi.org/10.1007/s00170-016-9652-7.
  • [6] Arunachalam RM, Manan MA, Spowage AC. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools. Manuf. (2004), 44, pp.1481–1491. https://doi.org/10.1016/j.ijmachtools.2004.05.005.
  • [7] Lucca DA, Brinksmeier E, Goch G. Progress in assessing surface and subsurface integrity. Annals of the ClRP (1998), 47 (2), pp.669-693. https://doi.org/10.1016/S0007-8506(07)63248-X.
  • [8] Saini S, Ahuja IS, Sharma VS. The effect of cutting parameters on surface integrity in hard turning. Applied Mechanics and Materials (2012), 110 (116), pp.751-757. https://doi.org/10.4028/www.scientific.net/AMM.110-116.751.
  • [9] Chou YK. Surface hardening of AISI 4340 steel by machining: a preliminary investigation. J. Mater. Process. Technol. (2002), 124, pp.171–177. https://doi.org/10.1016/S0924-0136(02)00132-2.
  • [10] Pawade RS, Joshi SS. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int. J. Adv. Manuf. Technol. (2011), 56, pp.47–62 https://doi.org/10.1007/s00170-011-3183-z.
  • [11] Pawade RS, Joshi SS. PK, Brahmankar MR. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718, Journal of Materials Processing Technology (2007), 192–193, pp.139-146, https://doi.org/10.1016/j.jmatprotec.2007.04.049.
  • [12] Phadke MS. Quality Engineering using Robust Design. Englewood Cliffs, NJ: Prentice Hall, 1989.
  • [13] Lin JL, Lin CL. The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics, International Journal of Machine Tools and Manufacture (2002), 42 (2), pp. 237-244. https://doi.org/10.1016/S0890-6955(01)00107-9.
  • [14] Tzeng YF, Chen FC. Multi-objective process optimization for turning of tool steels. Int J of Mach and Machina of Mater (2006), 1(1), pp.76–93. https://doi.org/10.1504/IJMMM.2006.010659.
  • [15] Soo SL, Hood R, Aspinwall DK, Voice WE, Sage C. Machinability and surface integrity of RR1000 Ni‐base super alloy. CIRP‐Ann. (2013), 60(1), pp.89–92. https://doi.org/10.1016/j.cirp.2011.03.094.
  • [16] Axinte DA, Andrews P. Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in Ni‐base super alloys. Proc. Inst. Mech. Eng. (2007), 221 (Part B), pp.591–603. https://doi.org/10.1243/09544054JEM704.
  • [17] Pawade RS, Joshi SS, Brahmankar PK. Effect of cutting edge geometry and machining parameters on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf (2008), 48 (1), pp.15–28. https://doi.org/10.1016/j.ijmachtools.2007.08.004.
  • [18] Lu HS, Chang CK, Hwang NC, Chung CT. Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. Journal of Materials Processing Technology (2009), 209 (8), pp. 3808-3817. https://doi.org/10.1016/j.jmatprotec.2008.08.030.
  • [19] Kuo CFJ, Su TL, Jhang PR, Huang CY, Chiu CH. Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturin. Energy (2011), 36 (5), pp. 3554-3562. https://doi.org/10.1016/j.energy.2011.03.065.
  • [20] Kıvak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement (2014), 50, pp.19-28. https://doi.org/10.1016/j.measurement.2013.12.017.
  • [21] Gupta A, Singh H, Aggarwal A. Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel, Expert Systems with Applications (2011), 38 (6), pp. 6822-6828. https://doi.org/10.1016/j.eswa.2010.12.057.
  • [22] Mandal N, Doloi B, Mondal B, Das R. Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis. Measurement (2011), 44 (10), pp.2149-2155. https://doi.org/10.1016/j.measurement.2011.07.022.
  • [23] Griffith B. Manufacturing Surface Technology-Surface Integrity and Functional Performance UK/London: Penton Press, 2001.
  • [24] Liu CR, Barash MM. The mechanical state of the sub layer of a surface generated by chip-removal process Part 1: Cutting with a sharp tool. Transactions of ASME, Journal of Engineering for Industry (1976), 98(4), pp. 1192–1201. https://doi.org/10.1115/1.3439081.
  • [25] Roy KR, A Primer on the Taguchi Method, Competitive Manufacturing Series, New York: Van Nostrand Reinhold, 1990.
  • [26] Çiftçi İ. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol Int (2006), 39, pp.565–569. https://doi.org/10.1016/j.triboint.2005.05.005.
  • [27] Shaw MC. Metal cutting principles. UK/Oxford: Oxford University Press, 1989, pp. 1–9.
  • [28] De Garmo EP, Black JT, Kohser RA. Materials and processes in manufacturing. New Jersey: Prentice-Hall Inc., 1997, pp. 214–652. [29] Boothroyd G, Knight WA. Fundamentals of metal machining and machine tools, Second edn. New York: Marcel Dekker, Inc., 1989, pp. 166–172. [30] Munoz–Escalona P, Cassier Z. Influence of the critical cutting speed on the surface finish of turned steel. Wear (1998), 218, pp.103–109. https://doi.org/10.1016/S0043-1648(98)00156-2.
  • [31] Thamizhmanii S, Kamarudin KE, Rahim A, Saparudin A, Hassan S. Tool wear and surface roughness in turning AISI 8620 using coated ceramic tool. Proceedings of the World Congress on Engineering, Vol II WCE, London (2007), pp. 1157–1161. [32] Gupta M, Kumar S. Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method. Eng Sci Technol Int J (2015), 18, pp.70–81. https://doi.org/10.1016/j.jestch.2014.09.006.
  • [33] Suresh R, Basavarajappa S. Effect of process parameters on tool wear and surface roughness during turning of hardened steel with coated ceramic tool. Procedia Mater Sci (2014), 5, pp.1450–1459. https://doi.org/10.1016/j.mspro.2014.07.464.
  • [34] Halverstadt RD. How to minimize and control residual machining stresses. American Machinist (1959), 103 (22) 138.
  • [35] Outeiro JC, Dias AM, Lebrun JL, Astakhov V. Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters. Mach Sci Technol (2002), 6(2), pp.251–270. https://doi.org/10.1081/MST-120005959.
  • [36] Shih AJ. Finite element analysis of the rake angle effects in orthogonal cutting. Int J Mech Sci (1996), 38(1), pp.1–17. https://doi.org/10.1016/0020-7403(95)00036-W.
  • [37] Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids (1998), 46 (10), pp.2103–2138. https://doi.org/10.1016/S0022-5096(98)00032-5.
  • [38] Sağlam H, Ünsaçar F, Yaldiz S. Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. Int J Mach Tools Manufac (2006), 46, pp.132–141. https://doi.org/10.1016/j.ijmachtools.2005.05.002.
  • [39] Outeiro JC, Umbrello D, M’Saoubi R. Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int J Mach Tools Manufac (2006), 46(14), pp.1786–1794. https://doi.org/10.1016/j.ijmachtools.2005.11.013.
  • [40] Günay M, Korkut İ, Aslan E, Şeker U. Experimental investigation of the effect of cutting tool rake angle on main cutting force. J Mater Process Technol (2005), 166, pp.44–49. https://doi.org/10.1016/j.jmatprotec.2004.07.092.
  • [41] Che-Haron CH. Tool life and surface integrity in turning titanium alloy. J Mater Process Technol (2001), 118:231–237. https://doi.org/10.1016/S0924-0136(01)00926-8.
  • [42] Che-Haron CH, Jawaid A. The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. J Mater Process Technol (2005), 166, pp.188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012.
  • [43] Devillez A, Le Coz G, Dominiak S, Dudzinski D. Dry machining of Inconel 718 workpiece surface integrity. J Mater Process Technol (2011), 211, pp.1590–1598. https://doi.org/10.1016/j.jmatprotec.2011.04.011.
  • [44] Ezugwu EO, Wang ZM, Okeke CI. Tool life and surface integrity when machining Inconel 718 with PVD and CVD coated tools. Tribol Trans (1999), 42(2), pp.353–360. https://doi.org/10.1080/10402009908982228.
  • [45] Sharman ARC, Hughes JI, Ridgway K. Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol (2004), 8(3), pp.399–414. https://doi.org/10.1081/MST-200039865.
  • [46] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf (2011), 51, pp.250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003.
  • [47] Bosheh SS, Mativenga PT. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. Int J Mach Tools Manuf (2006), 46, pp.225–233. https://doi.org/10.1016/j.ijmachtools.2005.04.009.
  • [48] Coelho RT, Silva LR, Braghini A Jr, Bezerra AA. Some effects of cutting edge preparation and geometric modifications when turning Inconel 718 at high cutting speeds. J Mater Process Technol (2004), 148(1), pp.147–153. https://doi.org/10.1016/j.jmatprotec.2004.02.001.
  • [49] Dvivedi A, Kumar P. Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int. J. Adv. Manuf. Technol. (2007), 34 131–140. https://doi.org/10.1007/s00170-006-0586-3.
  • [50] Kuo, CF.J., Su, TL. Optimization of multiple quality characteristics for polyether ether ketone injection molding process. Fibers Polym 7, 404–413 (2006). https://doi.org/10.1007/BF02875773.
  • [51] Kuo, CF.J., Su, TL. & Tsai, CP. Optimization of the needle punching process for the nonwoven fabrics with multiple quality characteristics by grey-based taguchi method.Fibers Polym 8, 654–664 (2007). https://doi.org/10.1007/BF02876005.
  • [52] Kuo, CF.J., Su, TL. Optimization of multiple quality characteristics for polyether ether ketone injection molding process. Fibers Polym 7, 404–413 (2006). https://doi.org/10.1007/BF02875773.
  • [53] Sudhakara D, Prasanthi G. Application of Taguchi Method for Determining Optimum Surface Roughness in Wire Electric Discharge Machining of P/M Cold Worked Tool Steel (Vanadis-4E), Procedia Engineering (2014), 97, pp.1565-1576. https://doi.org/10.1016/j.proeng.2014.12.440.
  • [54] Çetin MH, Özçelik B, Kuram E, Demirbas E. Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J. Cleaner Prod. (2011), 19, 2049–2056. https://doi.org/10.1016/j.jclepro.2011.07.013.

Analysis of The Effect of Tool Geometry and Machining Parameters on Surface Integrity Properties in Turning of AISI 316L Stainless Steel by Taguchi Method

Yıl 2022, , 391 - 407, 30.09.2022
https://doi.org/10.29109/gujsc.1149757

Öz

In this study, the Taguchi method has been applied to evaluate the surface integrity features of AISI 316L by using CVD TiAlN/Al2O3/TiCN coated carbide inserts with three different tool geometry under dry milling conditions. Several experiments were conducted using the L18 (2x3x3x3) an experimental design with an orthogonal array on a CNC turning. Analysis of variance (ANOVA) was used to determine the effects of the machining parameters on average surface roughness, circumferential and axial surface residual stresses and degree of work hardening. The depth of cut, cutting tool geometry, cutting speed and feed rate were selected as machining parameters. It was observed that the processing parameters had different effects on the quality properties. The depth of cut was a relatively efficient parameter on surface roughness and had no significant effect on other quality properties. Tool geometry was not affect the average surface roughness. However, it was more effective on the degree of hardening, circumferential and axial surface residual stresses, respectively. It was determined that the cutting speed had a more significant effect on the axial and circumferential surface residual stresses, and the degree of hardening, respectively. While the feedrate had a very high effect on the surface roughness, it was observed that it also had a significant effect on the circumferential and axial surface residual stresses, and the degree of hardening, respectively.

Proje Numarası

07/2009-33

Kaynakça

  • [1] Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels – a review. Int. J. Machining and Machinability of Materials (2012), 12 (1/2), pp.178–192. https://doi.org/10.1504/IJMMM.2012.048564.
  • [2] Gandarias A, De Lacalle LNL, Aizpitarte X, Lamikiz A. Study of the performance of the turning and drilling of austenitic stainless steels using two coolant techniques. International Journal of Machining and Machinability of Materials (2008), 3 (1–2), pp.1–17. https://doi.org/10.1504/IJMMM.2008.017621. [3] Youssef HA. Machining of Stainless Steels and Super Alloys Traditional and Non-traditional Techniques. UK: John Wiley & Sons, Ltd, 2016.
  • [4] Gürbüz, H. AISI 316l Çeliğin İşlenmesinde Kesici Takım Geometrisi Ve Kaplama Tiplerinin Yüzey Bütünlüğü Üzerindeki Etkilerinin Araştırılması. Doktora tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2012.
  • [5] Gürbüz H, Şeker U. Kafkas F. Investigation of effects of cutting insert rake face forms on surface integrity. Int. J. Adv. Manuf. Technol. (2017), 90, pp.3507–3522. https://doi.org/10.1007/s00170-016-9652-7.
  • [6] Arunachalam RM, Manan MA, Spowage AC. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools. Manuf. (2004), 44, pp.1481–1491. https://doi.org/10.1016/j.ijmachtools.2004.05.005.
  • [7] Lucca DA, Brinksmeier E, Goch G. Progress in assessing surface and subsurface integrity. Annals of the ClRP (1998), 47 (2), pp.669-693. https://doi.org/10.1016/S0007-8506(07)63248-X.
  • [8] Saini S, Ahuja IS, Sharma VS. The effect of cutting parameters on surface integrity in hard turning. Applied Mechanics and Materials (2012), 110 (116), pp.751-757. https://doi.org/10.4028/www.scientific.net/AMM.110-116.751.
  • [9] Chou YK. Surface hardening of AISI 4340 steel by machining: a preliminary investigation. J. Mater. Process. Technol. (2002), 124, pp.171–177. https://doi.org/10.1016/S0924-0136(02)00132-2.
  • [10] Pawade RS, Joshi SS. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int. J. Adv. Manuf. Technol. (2011), 56, pp.47–62 https://doi.org/10.1007/s00170-011-3183-z.
  • [11] Pawade RS, Joshi SS. PK, Brahmankar MR. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718, Journal of Materials Processing Technology (2007), 192–193, pp.139-146, https://doi.org/10.1016/j.jmatprotec.2007.04.049.
  • [12] Phadke MS. Quality Engineering using Robust Design. Englewood Cliffs, NJ: Prentice Hall, 1989.
  • [13] Lin JL, Lin CL. The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics, International Journal of Machine Tools and Manufacture (2002), 42 (2), pp. 237-244. https://doi.org/10.1016/S0890-6955(01)00107-9.
  • [14] Tzeng YF, Chen FC. Multi-objective process optimization for turning of tool steels. Int J of Mach and Machina of Mater (2006), 1(1), pp.76–93. https://doi.org/10.1504/IJMMM.2006.010659.
  • [15] Soo SL, Hood R, Aspinwall DK, Voice WE, Sage C. Machinability and surface integrity of RR1000 Ni‐base super alloy. CIRP‐Ann. (2013), 60(1), pp.89–92. https://doi.org/10.1016/j.cirp.2011.03.094.
  • [16] Axinte DA, Andrews P. Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in Ni‐base super alloys. Proc. Inst. Mech. Eng. (2007), 221 (Part B), pp.591–603. https://doi.org/10.1243/09544054JEM704.
  • [17] Pawade RS, Joshi SS, Brahmankar PK. Effect of cutting edge geometry and machining parameters on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf (2008), 48 (1), pp.15–28. https://doi.org/10.1016/j.ijmachtools.2007.08.004.
  • [18] Lu HS, Chang CK, Hwang NC, Chung CT. Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. Journal of Materials Processing Technology (2009), 209 (8), pp. 3808-3817. https://doi.org/10.1016/j.jmatprotec.2008.08.030.
  • [19] Kuo CFJ, Su TL, Jhang PR, Huang CY, Chiu CH. Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturin. Energy (2011), 36 (5), pp. 3554-3562. https://doi.org/10.1016/j.energy.2011.03.065.
  • [20] Kıvak T. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement (2014), 50, pp.19-28. https://doi.org/10.1016/j.measurement.2013.12.017.
  • [21] Gupta A, Singh H, Aggarwal A. Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel, Expert Systems with Applications (2011), 38 (6), pp. 6822-6828. https://doi.org/10.1016/j.eswa.2010.12.057.
  • [22] Mandal N, Doloi B, Mondal B, Das R. Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis. Measurement (2011), 44 (10), pp.2149-2155. https://doi.org/10.1016/j.measurement.2011.07.022.
  • [23] Griffith B. Manufacturing Surface Technology-Surface Integrity and Functional Performance UK/London: Penton Press, 2001.
  • [24] Liu CR, Barash MM. The mechanical state of the sub layer of a surface generated by chip-removal process Part 1: Cutting with a sharp tool. Transactions of ASME, Journal of Engineering for Industry (1976), 98(4), pp. 1192–1201. https://doi.org/10.1115/1.3439081.
  • [25] Roy KR, A Primer on the Taguchi Method, Competitive Manufacturing Series, New York: Van Nostrand Reinhold, 1990.
  • [26] Çiftçi İ. Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol Int (2006), 39, pp.565–569. https://doi.org/10.1016/j.triboint.2005.05.005.
  • [27] Shaw MC. Metal cutting principles. UK/Oxford: Oxford University Press, 1989, pp. 1–9.
  • [28] De Garmo EP, Black JT, Kohser RA. Materials and processes in manufacturing. New Jersey: Prentice-Hall Inc., 1997, pp. 214–652. [29] Boothroyd G, Knight WA. Fundamentals of metal machining and machine tools, Second edn. New York: Marcel Dekker, Inc., 1989, pp. 166–172. [30] Munoz–Escalona P, Cassier Z. Influence of the critical cutting speed on the surface finish of turned steel. Wear (1998), 218, pp.103–109. https://doi.org/10.1016/S0043-1648(98)00156-2.
  • [31] Thamizhmanii S, Kamarudin KE, Rahim A, Saparudin A, Hassan S. Tool wear and surface roughness in turning AISI 8620 using coated ceramic tool. Proceedings of the World Congress on Engineering, Vol II WCE, London (2007), pp. 1157–1161. [32] Gupta M, Kumar S. Investigation of surface roughness and MRR for turning of UD-GFRP using PCA and Taguchi method. Eng Sci Technol Int J (2015), 18, pp.70–81. https://doi.org/10.1016/j.jestch.2014.09.006.
  • [33] Suresh R, Basavarajappa S. Effect of process parameters on tool wear and surface roughness during turning of hardened steel with coated ceramic tool. Procedia Mater Sci (2014), 5, pp.1450–1459. https://doi.org/10.1016/j.mspro.2014.07.464.
  • [34] Halverstadt RD. How to minimize and control residual machining stresses. American Machinist (1959), 103 (22) 138.
  • [35] Outeiro JC, Dias AM, Lebrun JL, Astakhov V. Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters. Mach Sci Technol (2002), 6(2), pp.251–270. https://doi.org/10.1081/MST-120005959.
  • [36] Shih AJ. Finite element analysis of the rake angle effects in orthogonal cutting. Int J Mech Sci (1996), 38(1), pp.1–17. https://doi.org/10.1016/0020-7403(95)00036-W.
  • [37] Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids (1998), 46 (10), pp.2103–2138. https://doi.org/10.1016/S0022-5096(98)00032-5.
  • [38] Sağlam H, Ünsaçar F, Yaldiz S. Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature. Int J Mach Tools Manufac (2006), 46, pp.132–141. https://doi.org/10.1016/j.ijmachtools.2005.05.002.
  • [39] Outeiro JC, Umbrello D, M’Saoubi R. Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int J Mach Tools Manufac (2006), 46(14), pp.1786–1794. https://doi.org/10.1016/j.ijmachtools.2005.11.013.
  • [40] Günay M, Korkut İ, Aslan E, Şeker U. Experimental investigation of the effect of cutting tool rake angle on main cutting force. J Mater Process Technol (2005), 166, pp.44–49. https://doi.org/10.1016/j.jmatprotec.2004.07.092.
  • [41] Che-Haron CH. Tool life and surface integrity in turning titanium alloy. J Mater Process Technol (2001), 118:231–237. https://doi.org/10.1016/S0924-0136(01)00926-8.
  • [42] Che-Haron CH, Jawaid A. The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. J Mater Process Technol (2005), 166, pp.188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012.
  • [43] Devillez A, Le Coz G, Dominiak S, Dudzinski D. Dry machining of Inconel 718 workpiece surface integrity. J Mater Process Technol (2011), 211, pp.1590–1598. https://doi.org/10.1016/j.jmatprotec.2011.04.011.
  • [44] Ezugwu EO, Wang ZM, Okeke CI. Tool life and surface integrity when machining Inconel 718 with PVD and CVD coated tools. Tribol Trans (1999), 42(2), pp.353–360. https://doi.org/10.1080/10402009908982228.
  • [45] Sharman ARC, Hughes JI, Ridgway K. Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol (2004), 8(3), pp.399–414. https://doi.org/10.1081/MST-200039865.
  • [46] Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf (2011), 51, pp.250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003.
  • [47] Bosheh SS, Mativenga PT. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. Int J Mach Tools Manuf (2006), 46, pp.225–233. https://doi.org/10.1016/j.ijmachtools.2005.04.009.
  • [48] Coelho RT, Silva LR, Braghini A Jr, Bezerra AA. Some effects of cutting edge preparation and geometric modifications when turning Inconel 718 at high cutting speeds. J Mater Process Technol (2004), 148(1), pp.147–153. https://doi.org/10.1016/j.jmatprotec.2004.02.001.
  • [49] Dvivedi A, Kumar P. Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int. J. Adv. Manuf. Technol. (2007), 34 131–140. https://doi.org/10.1007/s00170-006-0586-3.
  • [50] Kuo, CF.J., Su, TL. Optimization of multiple quality characteristics for polyether ether ketone injection molding process. Fibers Polym 7, 404–413 (2006). https://doi.org/10.1007/BF02875773.
  • [51] Kuo, CF.J., Su, TL. & Tsai, CP. Optimization of the needle punching process for the nonwoven fabrics with multiple quality characteristics by grey-based taguchi method.Fibers Polym 8, 654–664 (2007). https://doi.org/10.1007/BF02876005.
  • [52] Kuo, CF.J., Su, TL. Optimization of multiple quality characteristics for polyether ether ketone injection molding process. Fibers Polym 7, 404–413 (2006). https://doi.org/10.1007/BF02875773.
  • [53] Sudhakara D, Prasanthi G. Application of Taguchi Method for Determining Optimum Surface Roughness in Wire Electric Discharge Machining of P/M Cold Worked Tool Steel (Vanadis-4E), Procedia Engineering (2014), 97, pp.1565-1576. https://doi.org/10.1016/j.proeng.2014.12.440.
  • [54] Çetin MH, Özçelik B, Kuram E, Demirbas E. Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J. Cleaner Prod. (2011), 19, 2049–2056. https://doi.org/10.1016/j.jclepro.2011.07.013.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Fırat Kafkas 0000-0003-3257-7413

Hüseyin Gürbüz 0000-0003-1391-172X

Ulvi Şeker 0000-0001-6455-6858

Proje Numarası 07/2009-33
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 27 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kafkas, F., Gürbüz, H., & Şeker, U. (2022). AISI 316L Paslanmaz Çeliğin Tornalanmasında Takım Geometrisi ve İşleme Parametrelerinin Yüzey Bütünlüğü Özelliklerine Etkisinin Taguchi Yöntemi ile Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(3), 391-407. https://doi.org/10.29109/gujsc.1149757

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526