Araştırma Makalesi
BibTex RIS Kaynak Göster

Karbon Fiber Takviyeli Poli-fital-amit (PPA) Kompozit ve Saf PPA Polimerinin Tribolojik Özelliklerinin Karşılaştırılması

Yıl 2023, , 744 - 755, 27.09.2023
https://doi.org/10.29109/gujsc.1288917

Öz

Endüstrinin birçok alanında üretim makinalarında hareket iletiminde polimer ve polimer esaslı kompozit malzemelerden imal edilmiş dişliler kullanılmaktadır. Uygun malzeme çiftlerinin seçimi dişli malzemelerinin çalışma ömrünü belirlemektedir. Yüksek performanslı poli-fital-amit (PPA) polimer ve PPA kompozitler kullanılarak makine elemanlarının ömrünü artıracaktır. Bu çalışmada, katkısız poli-fital-amit polimeri ile ağırlık olarak %30 oranında karbon fiber takviyeli poli-fital-amit (PPA-30CF) kompozitinin tribolojik performansları incelenmiştir. Aşınma deneyleri çelik diske karşı kuru ortam şartları altında gerçekleştirilmiştir. Karbon fiber takviyeli PPA kompoziti ikiz vidalı endüstriyel bir ekstruderde granül olarak üretilmiş ardından enjeksiyon makinasında aşınma test numuneleri basılmıştır. Aşınma testleri 20 N, 30 N ve 40 N yükler altında ve 0.5 ile 1.0 m/s kayma hızlarında gerçekleştirilmiştir. Deneyler, pim-disk aşınma test cihazı kullanılarak kuru ortam şartlarında ve oda sıcaklığında gerçekleştirilmiştir. Aşınma testleri sonucunda, karbon fiber takviyeli PPA polimer kompozitin sürtünme katsayısı ve aşınma oranı katkısız PPA polimerine göre daha düşük olduğu belirlenmiştir. Uygulanan yükün artırılması ile sürtünme katsayısı artarken kayma hızının artırılması ile sürtünme katsayısı değerleri azalmıştır. Aşınma oranı ise uygulanan yük ve kayma hızının artması ile artmıştır. Uygulanan aşınma ve sürtünme test çalışma şartlarında %30 oranında karbon fiber takviyeli poli-fital-amit kompozit, katkısız PPA polimerine göre yaklaşık %78 oranında daha dirençli olduğu tespit edilmiştir. Yani makine elemanı olan kullanılan dişlilerin çalışma ömrünün doğru malzeme kullanımı ile artırılabileceği sonucu çıkarılabilir.

Destekleyen Kurum

Sakarya Üniversitesi

Proje Numarası

2013-50-01-006

Teşekkür

Bu çalışma Sakarya Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje No: 2013-50-01-006).

Kaynakça

  • [1] Nuruzzaman D.M., Iqbal Asif A.K.M., Oumer A.N., Ismail N.M., Basri S., Experimental İnvestigation on the Mechanical Properties of Glass Fiber Reinforced Nylon, IOP Conf. Series: Materials Science and Engineering, 114 (2016) 012118.
  • [2] Essabir H., Denis R., Rachid B., Abou el K.Q., Effect of Nylon 6 (PA6) Addition on the Properties Glass Fiber Reinforced Acrylonitrile-Butadiene-Styrene, Polymer Composıtes, (2018) 14-21.
  • [3] Niyaraki M.N., Faramarz A.G., Ismail G., Sajjad D., Predicting of Impact Strength and Elastic Modulus of Polypropylene/EPDM/Graphene/Glass Fiber Nanocomposites by Response Surface Methodology, Technical Journal, 15 No. 2 (2021) 169-177.
  • [4] Ünal H., Yetgin S.H., Köse S., Tribological Performance of Polyamide 6/wax Blend for Rolling Bearing, Bushing and gear applications, International Journal of Chemistry and Technology, 7 No. 1 (2023) 77-83.
  • [5] Zhou S., Qiaoxin Z., Chaoqun W., Jin H., Effect of Carbon Fiber Reinforcement on the Mechanical and Tribological Properties of Polyamide6/Polyphenylene Sulfide Composites, Materials and Design, 44 (2013) 493–499.
  • [6] Chukov D.I., Stepashkin A.A., Maksimkin A.V., Tcherdyntsev V.V., Kaloshkin S.D., Kuskov K.V., Bugakov V.I., Investigation of Structure, Mechanical and Tribological Properties of Short Carbon Fiber Reinforced UHMWPE-Matrix Composites, Composites Part B, 76 (2015) 79-88.
  • [7] Li J., Li X.Z., Evaluation of the Tribological Properties of Carbon Fiber Reinforced Poly(vinylidene fluoride) Composites, Journal of Materials Engineering and Performance (JMEPEG), 19 No. 7 (2010) 1025–1030.
  • [8] Luo W., Qi L., Yi L., Shengtai Z., Huawei Z., Mei L., Enhanced Mechanical and triboLogical Properties in Polyphenylene Sulfide/Polytetrafluoroethylene Composites Reinforced by Short Carbon Fiber, Composites Part B, 91 (2016) 579-588.
  • [9] Gürgen S., Osman N.Ç., Melih C.K., Tribological Behavior of UHMWPE Matrix Composites Reinforced with PTFE Particles and Aramid Fibers, Composites Part B, 173 (2019) 106949.
  • [10] Li F., Ying H., Xiaochen H., Xiyu H., Dong J.,, Thermal, Mechanical, and Tribological Properties of Short Carbon Fibers/PEEK composites, High Performance Polymers, 30 No. 6 (2018) 657–666.
  • [11] Zhao Z.K, Sen-Sen D., Fei L., Hong-Mei X., Yuan-Qing L., Wei-Gang Z., Ning H., Shao-Yun F., Mechanical and Tribological Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polyethersulfone Composites: A Comparative Study, Composites Communications, 8 (2018) 1–6.
  • [12] Mahesha C.R, Shivarudraiah, Mohan N., Suprabha R., Three Body Abrasive Wear Studies on Nanoclay/NanoTiO2 filled Basalt-Epoxy Composites, Materials Today: Proceedings, 4, No. 2, Part A, (2017) 3979-3986.
  • [13] Suresha B., Mechanical and Three-Body Abrasive Wear Behaviour of SiC Filled Glass Epoxy Composites, Polymer Composites, 29 No. 9 (2008) 1020-1025.
  • [14] Chairman, C.A., Kumaresh Babu S.P., Three-Body Abrasive Wear Behavior of Basalt and Glass Fabric Reinforced Epoxy Composites, Applied Mechanics and Materials, 121-126 (2011) 534-538.
  • [15] Golchin A., Klaus F., Andreas N., Braham P., Tribological Behavior of Carbon-Filled PPS Composites in Water Lubricated Contacts, Wear, 328-329 (2015) 456–463.
  • [16] Zhang Y.Y., Qing C., Xiao-Long M., Pei H., Yuan-Qing L., Cai-Chao Z., Ning H., Shao-Yun F., Tribological Behavior of Short Carbon Fiber Reinforced Polyetherimide Composite under Water Lubrication Conditions, Composites Science and Technology, 216 (2021) 109044.
  • [17] Huimin Q., Chao H., Ga Z., Jiaxin Y., Yafeng Z., Hongtu H., Comparative Study of Tribological Properties of Carbon Fibers and Aramid Particles Reinforced Polyimide Composites under Dry and Sea Water Lubricated Conditions, Wear, 436–437 (2019) 203001.
  • [18] Dong F., Guoliang H., Hao L., Liang L., Fengxiang C., Jianzhang W., Fengyuan Y., An Investigation on the Mechanical and Tribological Properties of Carbon Fiber/Polyimide Composites at Elevated Temperatures, Polymer Composıtes, 39, No. 2 ( 2018) 869-882.
  • [19] Chang L., Zhong Z., Lin Y., Klaus F., Tribological Properties of High Temperature Resistant Polymer Composites with Fine Particles, Tribology International, 40 (2007) 1170–1178.
  • [20] Zhong W., Siqiang C., Zhe T., High-Temperature Tribological Behavior of HDPE Composites Reinforced by Short Carbon Fiber under Water-Lubricated Conditions, Materials 15 (2022) 4508.
  • [21] Singh M., Srihari D., Rakesh K.G., Vijay Kumar S., Effect of Load, Sliding Frequency, and Temperature on Tribological Properties of Graphene Nanoplatelets Coated Carbon Fiber Reinforced Polymer Composites, Journal of Composite Materials, 57 No. 1 (2023) 121–132.
  • [22] Cui W., Khalid R., Zhijun Z., Chengguo Y., Liming T., Weihua Z., Wanhua C., Shiguang P., Qiang X., Liran M., Yuanzhong H., Daxiong L., Bo L., Tingmei W., Tianbao M., Role of Transfer Film Formation on the Tribological Properties of Polymeric Composite Materials and Spherical Plain Bearing at Low Temperatures, Tribology International, 152 (2020) 106569.
  • [23] Khun N.W., He Z., Lee Hoon L., Chee Yoon Y., Xiao H., Jinglei Y., Tribological Properties of Short Carbon Fibers Reinforced Epoxy Composites, Friction 2 No. 3 (2014) 226–239.
  • [24] Li J., Xia Y.C., Evaluation of Tribological Properties of Carbon Fiber-Reinforced PA6 Composites, Polymer Composıtes 31, No. 3 (2010) 536-542.
  • [25] Yuqin T., Junlong H., The mechanical and Tribological Properties of Carbon Fiber Reinforced POM Composites, Applied Mechanics and Materials, 182-183 (2012) 135-138.
  • [26] Ozsarikaya B., Yetgin S.H., Unal H., Trıbologıcal Propertıes of Carbon Fıber and Multı-Walled Carbon Nanotube Fılled Polyamıde 66 Composıtes, Proceedings of the International Conference BALTTRIB’2019, 14–16 November 2019, 33-41.
  • [27] Kamlendra V., Shubrajit B., Sumit P. Effect of Graphite on Tribological and Mechanical Properties of PA6/5GF Composites. Journal of Thermal Analysis and Calorimetry, (2023) https://doi.org/10.1007/s10973-022-11939-8
  • [28] Kumar S.S., Kanagaraj G., Investigation on Mechanical and Tribological Behaviors of PA6 and Graphite-Reinforced PA6 Polymer Composites. Arabian Journal for Science and Engineering, 41 (2016) 4347–4357.
  • [29] Hatipoğlu G., Poli-tetra-flor-etilen Katkılı Poli-Fital-Amid Polimer Karışımlarının Mekanik ve Tribolojik Özelliklerinin İncelenmesi. Academic Platform Journal of Engineering and Smart Systems, II-III (2014) 09-14.
  • [30] Mateo G de G., Manjusri M., Arturo R.U., Amar K.M., Insights on the Structure-Performance Relationship of Polyphthalamide (PPA) Composites Reinforced with High-Temperature Produced Biocarbon, RSC Advances - The Royal Society of Chemistry, 10 (2020) 26917.
  • [31] Mateo G de G., Manjusri M., Stefano G., Amar K.M., Statistical Design of Biocarbon Reinforced Sustainable Composites from Blends of Polyphthalamide (PPA) and Polyamide 4,10 (PA410). Molecules, 26 (2021) 5387.
  • [32] Mateo G de G., Manjusri M., Amar K.M., Polyphthalamide Polymers: A review on Synthesis, Properties, and Advance Manufacturing and Emerging Applications, Journal of Applied Polymer Science, 139 (2022) 52965.
  • [33] Glenn P.D., Characterization and Properties of Polyphthalamide/Polyamide Blends and Polyphthalamide/Polyamide/Polyolefin Blends, Journal of Vinyl & Additive Technology, 2 No. 3 (1996) 229-234.
  • [34] Djukic S., Anthony B., Jerome B., Didier R.L., Mechanical Properties of Amorphous and Semi-crystalline Semi-aromatic Polyamides, Heliyon, 6 (2020) 03857.
  • [35] Cao L., Shuling D., Ziqin H., Zhidan L., Mingqing L., Peng Z., Wei L., Effects of Carbon Nanotube on Mechanical, Crystallization, and Electrical Properties of Binary Blends of Poly(phenylene sulfide) and Polyphthalamide, Journal of Thermal Analysis and Calorimetry, 125 (2016) 927–934.
  • [36] Sandro D.M., Antıdio de O.S.N., Maria Odila H.C., Eduardo C.B., Replacement of Metallic Parts for Polymer Composite Materials in Motorcycle Oil Pumps, Journal of Reinforced Plastics and Composites, 36 No. 2 (2017) 149–160.
  • [37] Takayuki O., Yosuke N., Influence of Addition of PTFE on the Tribological Properties of CF Reinforced Plant-Derived Semi-Aromatic Polyamide (PA10T) Biomass Composites. AIP Conference Proceedings, 2065 (2019) 040008.
  • [38] https://www.stagnoligears.com/en/motor-gears/polyamide-ppa/ (Erişim 03.03.2023).
  • [39] http://www.hxgcsl.com/en/product/288.html (Erişim 03.03.2023)
  • [40] https://picclick.it/Ingranaggio-Main-gear-corpo-farfallato-Drosselklappe-Audi-Volkswagen-165450877162.html
  • [41] Gizem H., Polifitalamid Kompozitlerin Mekanik, Termal ve Tribolojik Özelliklerinin Deneysel İncelenmesi, Sakarya Üniversitesi, Fen Bilimleri, Enstitüsü, Yüksek Lisans tezi, 2014.
  • [42] Kukureka S. N., Hooke C. J., Rao M., Liao P., Chen Y. K., The Effect of Fibre Reinforcement on the Friction and Wear of Polyamide 66 Under dry Rolling–Sliding Contact, Tribology International, 32 (1999) 107–116.
  • [43] Tanaka K., Friction and Wear of Glass and Carbon Fiber-Filled Thermoplastic Polymers, Journal of Tribology, 99 No. 4 (1977) 408-414.
  • [44] Suresha B., Chandramohan G., Samapthkumaran P., Seetharamu S., Three-body Abrasive Wear Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites, Materials Science and Engineering: A, 443 No. 1 (2007) 285-291.
  • [45] Li J., Zhang L.Q., The Research on the Mechanical and Tribological Properties of Carbon Fiber and Carbon Nanotube-Filled PEEK Composite, Polymer Composıtes, 31 No. 8 (2010) 1315-1320.

Comparison of Tribological Behaviour of Carbon Fibre Reinforced Poly-phthalate-amide (PPA) Composite and Pure PPA Polymer

Yıl 2023, , 744 - 755, 27.09.2023
https://doi.org/10.29109/gujsc.1288917

Öz

In many areas of the industry, gears made of polymer and polymer-based composite materials are used to transmit motion in production machines. The selection of suitable material pairs determines the working life of the gear materials. Using high performance poly-phthalate-amide (PPA) polymers and PPA composites will increase the lifetime of machine elements. In this study, the tribological performances of unfilled poly-phthalate-amide polymer and 30 wt% carbon fiber reinforced poly-phthalate-amide composite (PPA-30CF) were investigated. Wear tests were carried out against a steel disc under dry ambient conditions. Carbon fiber reinforced PPA composite was produced as granules in a twin screw industrial extruder and then wear test specimens were moulded in an injection moulding machine. The wear tests were carried out under loads of 20 N, 30 N and 40 N and sliding speeds of 0.5 and 1.0 m/s. The tests were carried out under dry ambient conditions and at room temperature using a pin-on-disc wear tester. As a result of the wear tests, it was determined that the friction coefficient and wear rate of the carbon fiber reinforced PPA polymer composite were lower than the unfilled PPA polymer. While the coefficient of friction increased with increasing the applied load, the coefficient of friction values decreased with increasing the sliding speed. The wear rate increased with increasing applied load and sliding speed. In the applied wear and friction test operating conditions, 30% carbon fiber reinforced poly-phthalate-amide composite was found to be approximately 78% more resistant than the unfilled PPA polymer. In other words, it can be concluded that the working life of the gears used as machine elements can be increased by using the right material.

Proje Numarası

2013-50-01-006

Kaynakça

  • [1] Nuruzzaman D.M., Iqbal Asif A.K.M., Oumer A.N., Ismail N.M., Basri S., Experimental İnvestigation on the Mechanical Properties of Glass Fiber Reinforced Nylon, IOP Conf. Series: Materials Science and Engineering, 114 (2016) 012118.
  • [2] Essabir H., Denis R., Rachid B., Abou el K.Q., Effect of Nylon 6 (PA6) Addition on the Properties Glass Fiber Reinforced Acrylonitrile-Butadiene-Styrene, Polymer Composıtes, (2018) 14-21.
  • [3] Niyaraki M.N., Faramarz A.G., Ismail G., Sajjad D., Predicting of Impact Strength and Elastic Modulus of Polypropylene/EPDM/Graphene/Glass Fiber Nanocomposites by Response Surface Methodology, Technical Journal, 15 No. 2 (2021) 169-177.
  • [4] Ünal H., Yetgin S.H., Köse S., Tribological Performance of Polyamide 6/wax Blend for Rolling Bearing, Bushing and gear applications, International Journal of Chemistry and Technology, 7 No. 1 (2023) 77-83.
  • [5] Zhou S., Qiaoxin Z., Chaoqun W., Jin H., Effect of Carbon Fiber Reinforcement on the Mechanical and Tribological Properties of Polyamide6/Polyphenylene Sulfide Composites, Materials and Design, 44 (2013) 493–499.
  • [6] Chukov D.I., Stepashkin A.A., Maksimkin A.V., Tcherdyntsev V.V., Kaloshkin S.D., Kuskov K.V., Bugakov V.I., Investigation of Structure, Mechanical and Tribological Properties of Short Carbon Fiber Reinforced UHMWPE-Matrix Composites, Composites Part B, 76 (2015) 79-88.
  • [7] Li J., Li X.Z., Evaluation of the Tribological Properties of Carbon Fiber Reinforced Poly(vinylidene fluoride) Composites, Journal of Materials Engineering and Performance (JMEPEG), 19 No. 7 (2010) 1025–1030.
  • [8] Luo W., Qi L., Yi L., Shengtai Z., Huawei Z., Mei L., Enhanced Mechanical and triboLogical Properties in Polyphenylene Sulfide/Polytetrafluoroethylene Composites Reinforced by Short Carbon Fiber, Composites Part B, 91 (2016) 579-588.
  • [9] Gürgen S., Osman N.Ç., Melih C.K., Tribological Behavior of UHMWPE Matrix Composites Reinforced with PTFE Particles and Aramid Fibers, Composites Part B, 173 (2019) 106949.
  • [10] Li F., Ying H., Xiaochen H., Xiyu H., Dong J.,, Thermal, Mechanical, and Tribological Properties of Short Carbon Fibers/PEEK composites, High Performance Polymers, 30 No. 6 (2018) 657–666.
  • [11] Zhao Z.K, Sen-Sen D., Fei L., Hong-Mei X., Yuan-Qing L., Wei-Gang Z., Ning H., Shao-Yun F., Mechanical and Tribological Properties of Short Glass Fiber and Short Carbon Fiber Reinforced Polyethersulfone Composites: A Comparative Study, Composites Communications, 8 (2018) 1–6.
  • [12] Mahesha C.R, Shivarudraiah, Mohan N., Suprabha R., Three Body Abrasive Wear Studies on Nanoclay/NanoTiO2 filled Basalt-Epoxy Composites, Materials Today: Proceedings, 4, No. 2, Part A, (2017) 3979-3986.
  • [13] Suresha B., Mechanical and Three-Body Abrasive Wear Behaviour of SiC Filled Glass Epoxy Composites, Polymer Composites, 29 No. 9 (2008) 1020-1025.
  • [14] Chairman, C.A., Kumaresh Babu S.P., Three-Body Abrasive Wear Behavior of Basalt and Glass Fabric Reinforced Epoxy Composites, Applied Mechanics and Materials, 121-126 (2011) 534-538.
  • [15] Golchin A., Klaus F., Andreas N., Braham P., Tribological Behavior of Carbon-Filled PPS Composites in Water Lubricated Contacts, Wear, 328-329 (2015) 456–463.
  • [16] Zhang Y.Y., Qing C., Xiao-Long M., Pei H., Yuan-Qing L., Cai-Chao Z., Ning H., Shao-Yun F., Tribological Behavior of Short Carbon Fiber Reinforced Polyetherimide Composite under Water Lubrication Conditions, Composites Science and Technology, 216 (2021) 109044.
  • [17] Huimin Q., Chao H., Ga Z., Jiaxin Y., Yafeng Z., Hongtu H., Comparative Study of Tribological Properties of Carbon Fibers and Aramid Particles Reinforced Polyimide Composites under Dry and Sea Water Lubricated Conditions, Wear, 436–437 (2019) 203001.
  • [18] Dong F., Guoliang H., Hao L., Liang L., Fengxiang C., Jianzhang W., Fengyuan Y., An Investigation on the Mechanical and Tribological Properties of Carbon Fiber/Polyimide Composites at Elevated Temperatures, Polymer Composıtes, 39, No. 2 ( 2018) 869-882.
  • [19] Chang L., Zhong Z., Lin Y., Klaus F., Tribological Properties of High Temperature Resistant Polymer Composites with Fine Particles, Tribology International, 40 (2007) 1170–1178.
  • [20] Zhong W., Siqiang C., Zhe T., High-Temperature Tribological Behavior of HDPE Composites Reinforced by Short Carbon Fiber under Water-Lubricated Conditions, Materials 15 (2022) 4508.
  • [21] Singh M., Srihari D., Rakesh K.G., Vijay Kumar S., Effect of Load, Sliding Frequency, and Temperature on Tribological Properties of Graphene Nanoplatelets Coated Carbon Fiber Reinforced Polymer Composites, Journal of Composite Materials, 57 No. 1 (2023) 121–132.
  • [22] Cui W., Khalid R., Zhijun Z., Chengguo Y., Liming T., Weihua Z., Wanhua C., Shiguang P., Qiang X., Liran M., Yuanzhong H., Daxiong L., Bo L., Tingmei W., Tianbao M., Role of Transfer Film Formation on the Tribological Properties of Polymeric Composite Materials and Spherical Plain Bearing at Low Temperatures, Tribology International, 152 (2020) 106569.
  • [23] Khun N.W., He Z., Lee Hoon L., Chee Yoon Y., Xiao H., Jinglei Y., Tribological Properties of Short Carbon Fibers Reinforced Epoxy Composites, Friction 2 No. 3 (2014) 226–239.
  • [24] Li J., Xia Y.C., Evaluation of Tribological Properties of Carbon Fiber-Reinforced PA6 Composites, Polymer Composıtes 31, No. 3 (2010) 536-542.
  • [25] Yuqin T., Junlong H., The mechanical and Tribological Properties of Carbon Fiber Reinforced POM Composites, Applied Mechanics and Materials, 182-183 (2012) 135-138.
  • [26] Ozsarikaya B., Yetgin S.H., Unal H., Trıbologıcal Propertıes of Carbon Fıber and Multı-Walled Carbon Nanotube Fılled Polyamıde 66 Composıtes, Proceedings of the International Conference BALTTRIB’2019, 14–16 November 2019, 33-41.
  • [27] Kamlendra V., Shubrajit B., Sumit P. Effect of Graphite on Tribological and Mechanical Properties of PA6/5GF Composites. Journal of Thermal Analysis and Calorimetry, (2023) https://doi.org/10.1007/s10973-022-11939-8
  • [28] Kumar S.S., Kanagaraj G., Investigation on Mechanical and Tribological Behaviors of PA6 and Graphite-Reinforced PA6 Polymer Composites. Arabian Journal for Science and Engineering, 41 (2016) 4347–4357.
  • [29] Hatipoğlu G., Poli-tetra-flor-etilen Katkılı Poli-Fital-Amid Polimer Karışımlarının Mekanik ve Tribolojik Özelliklerinin İncelenmesi. Academic Platform Journal of Engineering and Smart Systems, II-III (2014) 09-14.
  • [30] Mateo G de G., Manjusri M., Arturo R.U., Amar K.M., Insights on the Structure-Performance Relationship of Polyphthalamide (PPA) Composites Reinforced with High-Temperature Produced Biocarbon, RSC Advances - The Royal Society of Chemistry, 10 (2020) 26917.
  • [31] Mateo G de G., Manjusri M., Stefano G., Amar K.M., Statistical Design of Biocarbon Reinforced Sustainable Composites from Blends of Polyphthalamide (PPA) and Polyamide 4,10 (PA410). Molecules, 26 (2021) 5387.
  • [32] Mateo G de G., Manjusri M., Amar K.M., Polyphthalamide Polymers: A review on Synthesis, Properties, and Advance Manufacturing and Emerging Applications, Journal of Applied Polymer Science, 139 (2022) 52965.
  • [33] Glenn P.D., Characterization and Properties of Polyphthalamide/Polyamide Blends and Polyphthalamide/Polyamide/Polyolefin Blends, Journal of Vinyl & Additive Technology, 2 No. 3 (1996) 229-234.
  • [34] Djukic S., Anthony B., Jerome B., Didier R.L., Mechanical Properties of Amorphous and Semi-crystalline Semi-aromatic Polyamides, Heliyon, 6 (2020) 03857.
  • [35] Cao L., Shuling D., Ziqin H., Zhidan L., Mingqing L., Peng Z., Wei L., Effects of Carbon Nanotube on Mechanical, Crystallization, and Electrical Properties of Binary Blends of Poly(phenylene sulfide) and Polyphthalamide, Journal of Thermal Analysis and Calorimetry, 125 (2016) 927–934.
  • [36] Sandro D.M., Antıdio de O.S.N., Maria Odila H.C., Eduardo C.B., Replacement of Metallic Parts for Polymer Composite Materials in Motorcycle Oil Pumps, Journal of Reinforced Plastics and Composites, 36 No. 2 (2017) 149–160.
  • [37] Takayuki O., Yosuke N., Influence of Addition of PTFE on the Tribological Properties of CF Reinforced Plant-Derived Semi-Aromatic Polyamide (PA10T) Biomass Composites. AIP Conference Proceedings, 2065 (2019) 040008.
  • [38] https://www.stagnoligears.com/en/motor-gears/polyamide-ppa/ (Erişim 03.03.2023).
  • [39] http://www.hxgcsl.com/en/product/288.html (Erişim 03.03.2023)
  • [40] https://picclick.it/Ingranaggio-Main-gear-corpo-farfallato-Drosselklappe-Audi-Volkswagen-165450877162.html
  • [41] Gizem H., Polifitalamid Kompozitlerin Mekanik, Termal ve Tribolojik Özelliklerinin Deneysel İncelenmesi, Sakarya Üniversitesi, Fen Bilimleri, Enstitüsü, Yüksek Lisans tezi, 2014.
  • [42] Kukureka S. N., Hooke C. J., Rao M., Liao P., Chen Y. K., The Effect of Fibre Reinforcement on the Friction and Wear of Polyamide 66 Under dry Rolling–Sliding Contact, Tribology International, 32 (1999) 107–116.
  • [43] Tanaka K., Friction and Wear of Glass and Carbon Fiber-Filled Thermoplastic Polymers, Journal of Tribology, 99 No. 4 (1977) 408-414.
  • [44] Suresha B., Chandramohan G., Samapthkumaran P., Seetharamu S., Three-body Abrasive Wear Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites, Materials Science and Engineering: A, 443 No. 1 (2007) 285-291.
  • [45] Li J., Zhang L.Q., The Research on the Mechanical and Tribological Properties of Carbon Fiber and Carbon Nanotube-Filled PEEK Composite, Polymer Composıtes, 31 No. 8 (2010) 1315-1320.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Gizem Hatipoğlu Bu kişi benim

Hüseyin Ünal 0000-0003-0521-6647

Salih Hakan Yetgin 0000-0002-6068-9204

Proje Numarası 2013-50-01-006
Erken Görünüm Tarihi 24 Ağustos 2023
Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 27 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Hatipoğlu, G., Ünal, H., & Yetgin, S. H. (2023). Karbon Fiber Takviyeli Poli-fital-amit (PPA) Kompozit ve Saf PPA Polimerinin Tribolojik Özelliklerinin Karşılaştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 744-755. https://doi.org/10.29109/gujsc.1288917

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526