Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental and Numerical Analysis of an Innovative High Power LEDs Thermal Management System, based on Heat Sink- Heat Pipe Design

Yıl 2023, , 824 - 836, 27.09.2023
https://doi.org/10.29109/gujsc.1315135

Öz

The efficiency and lifespan of light emitting diodes (LEDs) are adversely affected by the junction temperature. Therefore, it is very important to operate a LED at a low junction temperature. In this study, it is aimed to minimize the junction temperature of high power LEDs so that reliability and light output of the device can be maximized.
In the study, a heat pipe-heat sink cooler was designed for the high power LEDs. The study was carried out experimentally and the results obtained from the experimental study were also verified numerically in the ANSYS Fluent software. Total power inputs ranging between 40 W and 100 W were applied to the LEDs and the performance of the cooler in the current design was examined. To observe the effect of the heat pipe on the LED junction temperature, a heat sink without heat pipe was designed and analyzed both experimentally and numerically. The results show that, the heat sink with fin is sufficient at low LED input powers, while at high LED input powers, the heat pipe-heat sink provides much more effective cooling. At the same time, the effect of different thermal interface materials on LED junction temperature was observed, by using with materials with thermal conductivities of 1.8 W/m.K, 8.5 W/m.K and 11 W/m.K, for each power input. As the coefficient of thermal conductivity of the thermal interface materials increased, the temperature of the LED solder point decreased.

Proje Numarası

2021-030

Kaynakça

  • [1] Hamida M.B.B., Almeshaal M.A., Hajlaoui K., Rothan Y.A., A Three-Dimensional Thermal Management Study for Cooling a Square Light Edding Diode, Case Studies In Thermal Engineering, 27 (2021) 101223.
  • [2] Hamida M.B.B., Charrada K., Three Dimensional Dynamic Study Of a Metal Halide Thallium Iodine Discharge Plasma Powered by a Sinusoidal and Square Signal, The European Physical Journal D, 70 (2016), 1-8.
  • [3] Araoud Z., Ben-Ahmed R., Ben-Hamida M.B., Franke S., Stambouli M., Charrada K., Zissis G., A Two- Dimensional Modeling of the Warm-Up Phase of a High-Pressure Mercury Discharge Lamp, Physics Of Plasmas, 17(6)(2010) 063505.
  • [4] Zhang K., Li M.J., Wang F.L., He Y.L., Experimental and Numerical Investigation of Natural Convection Heat Transfer of W-Type Fin Arrays, International Journal Of Heat And Mass Transfer, 152 (2020) 119315.
  • [5] Wang J., Zhao X.J., Cai Y.X., Zhang C., Bao W.W., RETRACTED: Experimental Study on the Thermal Management of High-Power LED Headlight Cooling Device Integrated with Thermoelectric Cooler Package, (2015) 532-540.
  • [6] Yang K.S., Chung C.H., Tu C.W., Wong C.C., Yang T.Y., Lee M.T., Thermal Spreading Resistance Characteristics of a High Power Light Emitting Diode Module, Applied Thermal Engineering, 70(1)(2014) , 361-368.
  • [7] Shen L., Tu Z., Hu Q., Tao C., Chen H.,The Optimization Design and Parametric Study of Thermoelectric Radiant Cooling and Heating Panel, Applied Thermal Engineering, 112 (2017) 688-697.
  • [8] Jang D., Yu S.H., Lee K.S., Multidisciplinary Optimization of a Pin-Fin Radial Heat Sink for LED Lighting Applications, International Journal of Heat and Mass Transfer, 55(4) (2012), 515-521.
  • [9] Costa V.A., Lopes A.M., Improved Radial Heat Sink for Led Lamp Cooling, Applied Thermal Engineering, 70(1) (2014) 131-138.
  • [10] Hoelen C., Borel H., de Graaf J., Keuper M., Lankhorst M., Mutter C., Wegh R., Remote Phosphor LED Modules for General Illumination: Toward 200 Lm/W General Lighting LED Light Sources, In Eighth International Conference On Solid State Lighting, International Society for Optics and Photonics, (2008) 7058.
  • [11] Huang B.J., Tang C.W., Wu M.S., System Dynamics Model of High-Power LED Luminaire, Applied Thermal Engineering, 29(4) (2009) 609-616.
  • [12] Jang D., Yook S.J., Lee K.S., Optimum Design of a Radial Heat Sink with a Fin-Height Profile for High- Power LED Lighting Applications, Applied Energy, 116 (2014) 260-268.
  • [13] Schmid G., Valladares-Rendón L.G., Yang T.H., Chen, S.L., Numerical Analysis of the Effect of a Central Cylindrical Opening on the Heat Transfer of Radial Heat Sinks for Different Orientations, Applied Thermal Engineering, 125 (2017) 575-583.
  • [14] Shen Q., Sun D., Xu Y., Jin T., Zhao X., Orientation Effects on Natural Convection Heat Dissipation of Rectangular Fin Heat Sinks Mounted on Led’s, International Journal of Heat and Mass Transfer, 75 (2014) 462-469.
  • [15] Yin L., Yang L., Yang W., Guo Y., Ma K., Li S., Zhang J., Thermal Design and Analysis of Multi-Chip LED Module with Ceramic Substrate, Solid-State Electronics, 54(12) (2010), 1520-1524.
  • [16] Ha M., Graham S., Development of a Thermal Resistance Model for Chip-On-Board Packaging of High Power LED Arrays, Microelectronics Reliability, 52(5) (2012) 836-844.
  • [17] Tang Y., Liu D., Yang H., Yang P., Thermal Effects on LED Lamp with Different Thermal Interface Materials, IEEE Transactions on Electron Devices, 63(12) (2016) 4819-4824.
  • [18] Abdelmlek K.B., Araoud Z., Ghnay R., Abderrazak K., Charrada K., Zissis, G., Effect of Thermal Conduction Path Deficiency on Thermal Properties of Leds Package, Applied Thermal Engineering. 102 (2016) 251-260.
  • [19] Moon S.H., Park Y.W., Yang H.M., A Single Unit Cooling Fins Aluminum Flat Heat Pipe for 100 W Socket Type COB LED Lamp, Applied Thermal Engineering. 126 (2016) 1164-1169.
  • [20] Sosoi G., Vizitiu Ş.R., Burlacu A., Galatanu C.D., A Heat pipe Cooler for High Power LED’s Cooling in Harsh Conditions, Procedia Manufacturing, 32 (2017) 513-519.
  • [21] Joshi T., Parkash O., Krishan G., Numerical Investigation of Slurry Pressure Drop at Different Pipe Roughness in a Straight Pipe Using CFD, Arabian Journal for Science and Engineering, 47 (12) (2022), 15391-15414.
  • [22] Çiftçi E., AlN/Saf Su Nanoakışkanının Isı Borusu Performans Parametreleri Üzerindeki Etkilerinin Deneysel Olarak Araştırılması, Gazi University Journal of Science Part C: Design and Technology, 8(4) (2020), 858-871.
  • [23] Huang D.S., Chen T.C., Tsai L.T., Lin M.T., Design of Fins with a Grooved Heat Pipe for Dissipation of Heat from High Powered Automotive LED Headlights, Energy Conversion and Management, 180 (2019) 550–558.
  • [24] Wang H., Qu J., Peng Y., Sun Q., Heat Transfer Performance of a Novel Tubular Oscillating Heat Pipe with Sintered Copper Particles Inside Flat-Plate Evaporator and High-Power LED Heat Sink Application, Energy Conversion and Management, 189 (2019) 215–222.
  • [25] Lu X., Hua T-C., Wang Y.P., Thermal Analysis of High Power LED Package with HPHS, Microelectronics Journal, 42 (2011) 1257–1262.
  • [26] Tang Y., Luo Y., Ou P., Wang H., Ma H., Qin Y., Bai P., Zhou G., Experimental Investigation on Active Heat Sink with Heat Pipe Assistance for High-Power Automotive LED Headlights, Case Studies In Thermal Engineering, 28 (2021) 101503.
  • [27] Kline S.J., (1985), The Purposes of Uncertainty Analysis, Journal of Fluids Engineerings. 107, 153–160.
  • [28] Moffat R.J, Describing the Uncertainties in Experimental Results, Exp. Therm Fluid Sci. 1 (1) (1988) 3–17
  • [29] Fatchurrohman N., Chia S.T., Performance of Hybrid Nano-Micro Reinforced Mg Metal Matrix Composites Brake Calliper: Simulation Approach, In IOP Conference Series: Materials Science and Engineering, IOP Publishing. 257(1) (2017) 12060.
  • [30] ANSYS FLUENT Theory Guide (Release 13.0), Multiphase Flows. ANSYS, Inc. (chapter 17), (2010) 455-568.
  • [31] ANSYS FLUENT Theory Guide (Release 12.0), Multiphase Flows. ANSYS, Inc. (chapter 6.2.2), (2009).
  • [32] De Schepper S.C., Heynderickx G.J., Marin G.B., Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker. Computers & Chemical Engineering, 33(1) (2009) 122-132.
  • [33] Rammohan A., Chandramohan, V.P., Experimental Analysis on Estimating Junction Temperature and Service Life of High Power LED Array Microelectronics Reliability, 120 (2021) 114121.
  • [34] DS115 LUXEON COB Core Range Product Datasheet, https://www.lumileds.com/uploads/419/ DS115-pdf:
  • [35] Zhang P., Zeng J., Chen X., Cai M., Xiao J., Yang D., An Experimental Investigation of a 100-W High-Power Light-Emitting Diode Array Using Vapor Chamber–Based Plate, Advances in Mechanical Engineering, 7(11) (2015) 1687814015620074.
  • [36] Lu X.Y., Hua T.C., Liu M. J., Cheng Y.X., Thermal Analysis of Loop Heat Pipe Used for High-Power LED.,Thermochimica Acta, 493(1-2) (2009) 25-29.
  • [37] Gwinn J.P., Webb R.L., Performance and Testing Of Thermal Interface Materials, Microelectronics Journal, 34 (3) (2003) 215-222.

Isı Emici-Isı Borulu İnovatif Bir Yüksek Güçlü LED Termal Yönetim Sisteminin Deneysel ve Nümerik Analizi

Yıl 2023, , 824 - 836, 27.09.2023
https://doi.org/10.29109/gujsc.1315135

Öz

Işık yayan diyotların (LED'ler) verimliliği ve ömrü bağlantı sıcaklığından olumsuz etkilenir. Bu nedenle, LED'i düşük bağlantı sıcaklığında çalıştırmak çok önemlidir. Bu çalışmada, cihazın güvenilirliğini ve ışık çıkışını maksimize edebilmek için yüksek güçlü LED'lerin bağlantı sıcaklığının en aza indirilmesi amaçlanmaktadır.
Çalışmada, yüksek güçlü LED'ler için bir ısı borulu ısı alıcı (HPHS) soğutucu tasarlanmıştır. Çalışma deneysel olarak gerçekleştirilmiş ve deneysel çalışmadan elde edilen sonuçlar ANSYS Fluent yazılımı kullanılarak sayısal olarak da doğrulanmıştır. LED'lere 40 W ile 100 W arasında değişen toplam güç girdileri uygulanmış ve bu durumlarda soğutucunun mevcut tasarımdaki performansı incelenmiştir. Isı borusunun LED birleşim sıcaklığı üzerindeki etkisini gözlemlemek için, ısı borusu olmayan bir ısı emici de hem deneysel hem de sayısal olarak tasarlanmış ve analiz edilmiştir. Sonuçlar, kanatlı soğutucunun düşük LED giriş güçlerinde yeterli olduğunu, yüksek LED giriş güçlerinde ise HPHS'nin çok daha etkili soğutma sağladığını göstermektedir. Aynı zamanda her güç girişi için 1.8, 8.5 ve 11 W/m.K ısıl iletkenliğe sahip malzemeler kullanılarak farklı termal arayüz malzemelerinin LED bağlantı sıcaklığı üzerindeki etkisi gözlenmiştir. Termal arayüz malzemelerinin termal iletkenlik katsayısı arttıkça LED lehim noktasının sıcaklığı azalmıştır.

Destekleyen Kurum

Aksaray Üniversitesi Bilimsel Araştırma Projesi Koordinasyon Birimi

Proje Numarası

2021-030

Kaynakça

  • [1] Hamida M.B.B., Almeshaal M.A., Hajlaoui K., Rothan Y.A., A Three-Dimensional Thermal Management Study for Cooling a Square Light Edding Diode, Case Studies In Thermal Engineering, 27 (2021) 101223.
  • [2] Hamida M.B.B., Charrada K., Three Dimensional Dynamic Study Of a Metal Halide Thallium Iodine Discharge Plasma Powered by a Sinusoidal and Square Signal, The European Physical Journal D, 70 (2016), 1-8.
  • [3] Araoud Z., Ben-Ahmed R., Ben-Hamida M.B., Franke S., Stambouli M., Charrada K., Zissis G., A Two- Dimensional Modeling of the Warm-Up Phase of a High-Pressure Mercury Discharge Lamp, Physics Of Plasmas, 17(6)(2010) 063505.
  • [4] Zhang K., Li M.J., Wang F.L., He Y.L., Experimental and Numerical Investigation of Natural Convection Heat Transfer of W-Type Fin Arrays, International Journal Of Heat And Mass Transfer, 152 (2020) 119315.
  • [5] Wang J., Zhao X.J., Cai Y.X., Zhang C., Bao W.W., RETRACTED: Experimental Study on the Thermal Management of High-Power LED Headlight Cooling Device Integrated with Thermoelectric Cooler Package, (2015) 532-540.
  • [6] Yang K.S., Chung C.H., Tu C.W., Wong C.C., Yang T.Y., Lee M.T., Thermal Spreading Resistance Characteristics of a High Power Light Emitting Diode Module, Applied Thermal Engineering, 70(1)(2014) , 361-368.
  • [7] Shen L., Tu Z., Hu Q., Tao C., Chen H.,The Optimization Design and Parametric Study of Thermoelectric Radiant Cooling and Heating Panel, Applied Thermal Engineering, 112 (2017) 688-697.
  • [8] Jang D., Yu S.H., Lee K.S., Multidisciplinary Optimization of a Pin-Fin Radial Heat Sink for LED Lighting Applications, International Journal of Heat and Mass Transfer, 55(4) (2012), 515-521.
  • [9] Costa V.A., Lopes A.M., Improved Radial Heat Sink for Led Lamp Cooling, Applied Thermal Engineering, 70(1) (2014) 131-138.
  • [10] Hoelen C., Borel H., de Graaf J., Keuper M., Lankhorst M., Mutter C., Wegh R., Remote Phosphor LED Modules for General Illumination: Toward 200 Lm/W General Lighting LED Light Sources, In Eighth International Conference On Solid State Lighting, International Society for Optics and Photonics, (2008) 7058.
  • [11] Huang B.J., Tang C.W., Wu M.S., System Dynamics Model of High-Power LED Luminaire, Applied Thermal Engineering, 29(4) (2009) 609-616.
  • [12] Jang D., Yook S.J., Lee K.S., Optimum Design of a Radial Heat Sink with a Fin-Height Profile for High- Power LED Lighting Applications, Applied Energy, 116 (2014) 260-268.
  • [13] Schmid G., Valladares-Rendón L.G., Yang T.H., Chen, S.L., Numerical Analysis of the Effect of a Central Cylindrical Opening on the Heat Transfer of Radial Heat Sinks for Different Orientations, Applied Thermal Engineering, 125 (2017) 575-583.
  • [14] Shen Q., Sun D., Xu Y., Jin T., Zhao X., Orientation Effects on Natural Convection Heat Dissipation of Rectangular Fin Heat Sinks Mounted on Led’s, International Journal of Heat and Mass Transfer, 75 (2014) 462-469.
  • [15] Yin L., Yang L., Yang W., Guo Y., Ma K., Li S., Zhang J., Thermal Design and Analysis of Multi-Chip LED Module with Ceramic Substrate, Solid-State Electronics, 54(12) (2010), 1520-1524.
  • [16] Ha M., Graham S., Development of a Thermal Resistance Model for Chip-On-Board Packaging of High Power LED Arrays, Microelectronics Reliability, 52(5) (2012) 836-844.
  • [17] Tang Y., Liu D., Yang H., Yang P., Thermal Effects on LED Lamp with Different Thermal Interface Materials, IEEE Transactions on Electron Devices, 63(12) (2016) 4819-4824.
  • [18] Abdelmlek K.B., Araoud Z., Ghnay R., Abderrazak K., Charrada K., Zissis, G., Effect of Thermal Conduction Path Deficiency on Thermal Properties of Leds Package, Applied Thermal Engineering. 102 (2016) 251-260.
  • [19] Moon S.H., Park Y.W., Yang H.M., A Single Unit Cooling Fins Aluminum Flat Heat Pipe for 100 W Socket Type COB LED Lamp, Applied Thermal Engineering. 126 (2016) 1164-1169.
  • [20] Sosoi G., Vizitiu Ş.R., Burlacu A., Galatanu C.D., A Heat pipe Cooler for High Power LED’s Cooling in Harsh Conditions, Procedia Manufacturing, 32 (2017) 513-519.
  • [21] Joshi T., Parkash O., Krishan G., Numerical Investigation of Slurry Pressure Drop at Different Pipe Roughness in a Straight Pipe Using CFD, Arabian Journal for Science and Engineering, 47 (12) (2022), 15391-15414.
  • [22] Çiftçi E., AlN/Saf Su Nanoakışkanının Isı Borusu Performans Parametreleri Üzerindeki Etkilerinin Deneysel Olarak Araştırılması, Gazi University Journal of Science Part C: Design and Technology, 8(4) (2020), 858-871.
  • [23] Huang D.S., Chen T.C., Tsai L.T., Lin M.T., Design of Fins with a Grooved Heat Pipe for Dissipation of Heat from High Powered Automotive LED Headlights, Energy Conversion and Management, 180 (2019) 550–558.
  • [24] Wang H., Qu J., Peng Y., Sun Q., Heat Transfer Performance of a Novel Tubular Oscillating Heat Pipe with Sintered Copper Particles Inside Flat-Plate Evaporator and High-Power LED Heat Sink Application, Energy Conversion and Management, 189 (2019) 215–222.
  • [25] Lu X., Hua T-C., Wang Y.P., Thermal Analysis of High Power LED Package with HPHS, Microelectronics Journal, 42 (2011) 1257–1262.
  • [26] Tang Y., Luo Y., Ou P., Wang H., Ma H., Qin Y., Bai P., Zhou G., Experimental Investigation on Active Heat Sink with Heat Pipe Assistance for High-Power Automotive LED Headlights, Case Studies In Thermal Engineering, 28 (2021) 101503.
  • [27] Kline S.J., (1985), The Purposes of Uncertainty Analysis, Journal of Fluids Engineerings. 107, 153–160.
  • [28] Moffat R.J, Describing the Uncertainties in Experimental Results, Exp. Therm Fluid Sci. 1 (1) (1988) 3–17
  • [29] Fatchurrohman N., Chia S.T., Performance of Hybrid Nano-Micro Reinforced Mg Metal Matrix Composites Brake Calliper: Simulation Approach, In IOP Conference Series: Materials Science and Engineering, IOP Publishing. 257(1) (2017) 12060.
  • [30] ANSYS FLUENT Theory Guide (Release 13.0), Multiphase Flows. ANSYS, Inc. (chapter 17), (2010) 455-568.
  • [31] ANSYS FLUENT Theory Guide (Release 12.0), Multiphase Flows. ANSYS, Inc. (chapter 6.2.2), (2009).
  • [32] De Schepper S.C., Heynderickx G.J., Marin G.B., Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker. Computers & Chemical Engineering, 33(1) (2009) 122-132.
  • [33] Rammohan A., Chandramohan, V.P., Experimental Analysis on Estimating Junction Temperature and Service Life of High Power LED Array Microelectronics Reliability, 120 (2021) 114121.
  • [34] DS115 LUXEON COB Core Range Product Datasheet, https://www.lumileds.com/uploads/419/ DS115-pdf:
  • [35] Zhang P., Zeng J., Chen X., Cai M., Xiao J., Yang D., An Experimental Investigation of a 100-W High-Power Light-Emitting Diode Array Using Vapor Chamber–Based Plate, Advances in Mechanical Engineering, 7(11) (2015) 1687814015620074.
  • [36] Lu X.Y., Hua T.C., Liu M. J., Cheng Y.X., Thermal Analysis of Loop Heat Pipe Used for High-Power LED.,Thermochimica Acta, 493(1-2) (2009) 25-29.
  • [37] Gwinn J.P., Webb R.L., Performance and Testing Of Thermal Interface Materials, Microelectronics Journal, 34 (3) (2003) 215-222.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Tasarım ve Teknoloji
Yazarlar

Burcu Çiçek 0000-0002-1777-4980

Emre Ürün 0000-0002-1797-2661

Necmettin Şahin 0000-0002-5756-4216

Proje Numarası 2021-030
Erken Görünüm Tarihi 12 Eylül 2023
Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 15 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çiçek, B., Ürün, E., & Şahin, N. (2023). Experimental and Numerical Analysis of an Innovative High Power LEDs Thermal Management System, based on Heat Sink- Heat Pipe Design. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 824-836. https://doi.org/10.29109/gujsc.1315135

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526