Derleme
BibTex RIS Kaynak Göster

Atık LFP Bataryaların Geri Dönüşümü

Yıl 2023, , 997 - 1023, 28.12.2023
https://doi.org/10.29109/gujsc.1332596

Öz

Son yıllarda, atık lityum iyon bataryalardan (LIB'ler) değerli metallerin geri kazanımı, yüksek çevresel etki potansiyelleri ve metalik kaynakların sürdürülebilir şekilde kullanılamaması nedeniyle önemli hale gelmiştir. Düşük maliyet ve yüksek güvenlik avantajları nedeniyle farklı LIB türlerinden biri olan lityum demir fosfat (LFP) bataryalarının kullanımı artmakta ve bununla birlikte atık LFP bataryaların oluşum miktarı da her geçen gün artmaktadır. Buna bağlı olarak, atık LFP bataryalardaki değerli metallerin geri kazanılması, üretim ve otomotiv şirketlerinin çoğu LFP malzemelerine yöneldiği için çok önemlidir. Atık LFP bataryalar, içerdikleri az sayıda değerli metal nedeniyle daha az ilgi görmüştür, ancak atık batarya geri dönüşüm yöntemleri ekonomi, çevre ve insan sağlığını iyileştirmiştir. Ekonomik Li geri kazanım teknolojilerinin geliştirilmesi, elektrikli araç ve atık LFP batarya endüstrilerinin uzun vadeli büyümesi ve faydaları için çok önemlidir. Mevcut derleme makalesi, bataryaların geri dönüşüm süreciyle ilgili sorunları, değerli metallerin çıkarılması ihtiyacını ve batarya geri dönüşümü için olası yöntemleri irdelemektedir. Hücrelerin mekanik ön arıtımı, aktif katot malzemesinin hidrometalurjik işlemi gibi yöntemler, atık LFP batarya geri dönüşümü için en verimli yöntem seçeneği olarak görülmektedir. Buna ek olarak, deşarj yöntemlerinden sonra aktif malzemelerden bileşenlerin ve metallerin geri kazanılması, güvenli bir şekilde uzaklaştırılması ve ön işlemden geçirilmesi ağırlıklı olarak hidrometalurjik yöntemlerle gerçekleştirilmektedir. Bu teknolojilerin daha fazla ölçeklendirilmesi ihtiyacı ve temel zorluklar bu çalışmada sunulmakta ve tartışılmaktadır. Önerilen incelemenin, atık LFP batarya geri dönüşüm süreçlerinin anlaşılmasına yardımcı olacağına inanılmaktadır

Destekleyen Kurum

Eskişehir Teknik Üniversitesi

Proje Numarası

23LÖT067

Teşekkür

Yazarlar bu çalışmayı Bilimsel Araştırma Projesiyle (Proje Numarası: 23LÖT067) destekleyen Eskişehir Teknik Üniversitesi'ne teşekkür ederler

Kaynakça

  • [1] Thomson, I., & Charnock, R. (2022). Engaging with the IPCC on Climate Finance: A Call to Action and Platform for Social and Environmental Accounting Scholars. Social and Environmental Accountability Journal, 42(1-2), 1-10. https://doi.org/10.1080/0969160X.2022.2085131
  • [2] Mansouri Kouhestani, F., Byrne, J., Johnson, D., Spencer, L., Brown, B., Hazendonk, P., & Scott, J. (2020). Multi-criteria PSO-based optimal design of grid-connected hybrid renewable energy systems. International Journal of Green Energy, 17(11), 617-631. https://doi.org/10.1080/15435075.2020.1779072
  • [3] Maiyalagan, T., & Elumalai, P. (Eds.). (2021). Rechargeable Lithium-ion Batteries: Trends and Progress in Electric Vehicles. CRC Press.
  • [4] Scrosati, B., Garche, J., & Tillmetz, W. (Eds.). (2015). Advances in battery technologies for electric vehicles. Woodhead Publishing.
  • [5] Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., Yu, D., Liu, Y., Titirici, M. M., Chueh, Y. L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32. https://doi.org/10.1002/inf2.12000
  • [6] Butt, A., Ali, G., Tul Kubra, K., Sharif, R., Salman, A., Bashir, M., & Jamil, S. (2022). Recent Advances in Enhanced Performance of Ni‐Rich Cathode Materials for Li‐Ion Batteries: A Review. Energy Technology, 10(3), 2100775. https://doi.org/10.1002/ente.202100775
  • [7] Steward, D., Mayyas, A., & Mann, M. (2019). Economics and challenges of Li-ion battery recycling from end-of-life vehicles. Procedia Manufacturing, 33, 272-279. https://doi.org/10.1016/j.promfg.2019.04.033 [8] Raj, T., Chandrasekhar, K., Kumar, A. N., Sharma, P., Pandey, A., Jang, M., Jeon, B. H., Varjani, S. & Kim, S. H. (2022). Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 429, 128312. https://doi.org/10.1016/j.jhazmat.2022.128312
  • [9] Andwari, A. M., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430. https://doi.org/10.1016/j.rser.2017.03.138
  • [10] Wang, M., Liu, K., Dutta, S., Alessi, D. S., Rinklebe, J., Ok, Y. S., & Tsang, D. C. (2022). Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews, 163, 112515. https://doi.org/10.1016/j.rser.2022.112515
  • [11] Alfaro-Algaba, M., & Ramirez, F. J. (2020). Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resources, Conservation and Recycling, 154, 104461. https://doi.org/10.1016/j.resconrec.2019.104461
  • [12] Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R. & Wu, F. (2020). Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chemical reviews, 120(14), 7020-7063. https://doi.org/10.1021/acs.chemrev.9b00535
  • [13] Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of power sources, 195(4), 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  • [14] Qiao, H., & Wei, Q. (2012). Functional nanofibers in lithium-ion batteries. In Functional Nanofibers and their Applications (pp. 197-208). Woodhead Publishing. https://doi.org/10.1533/9780857095640.2.197
  • [15] Forte, F., Pietrantonio, M., Pucciarmati, S., Puzone, M., & Fontana, D. (2021). Lithium iron phosphate batteries recycling: An assessment of current status. Critical Reviews in Environmental Science and Technology, 51(19), 2232-2259. https://doi.org/10.1080/10643389.2020.1776053
  • [16] Ali, H., Khan, H. A., & Pecht, M. G. (2021). Circular economy of Li Batteries: Technologies and trends. Journal of Energy Storage, 40, 102690. https://doi.org/10.1016/j.est.2021.102690
  • [17] Zeng, X., Li, J., & Shen, B. (2015). Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of hazardous materials, 295, 112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064
  • [18] Tan, Q., & Li, J. (2015). Recycling metals from wastes: a novel application of mechanochemistry. Environmental science & technology, 49(10), 5849-5861. https://doi.org/10.1021/es506016w
  • [19] Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
  • [20] Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D., & Wang, Y. (2016). Current and prospective Li-ion battery recycling and recovery processes. Jom, 68, 2632-2638.
  • [21] Buchert, M., & Sutter, J. (2015). Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien.
  • [22] Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. Mrs Bulletin, 40(12), 1067-1078. https://doi.org/10.1557/mrs.2015.259
  • [23] Blomgren, G. E. (2016). The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), A5019. 10.1149/2.0251701jes
  • [24] Pickett, L., Winnet, J., Carver, D., & Bolton, P. (2021). Electric vehicles and infrastructure. House of Commons Library: London, UK.
  • [25] Ma, J., Li, Y., Grundish, N. S., Goodenough, J. B., Chen, Y., Guo, L., Peng, Z., Qi, X., Yang, F., Qie, L., Wang, C. A., Huang, B., Huang, Z., Chen, L., Su, D., Wang, G., Peng, X., Chen, Z., Yang, J., He, S., Zhang, X., Yu, H., Fu, C., Jiang, M., Deng, W., Sun, C. F., Pan, Q., Tang, Y., Li, X., Ji, X., Wan, F., Niu, Z., Lian, F., Wang, C., Wallace, G., Fan, M., Meng, Q., Xin, S., Guo, Y. G. & Wan, L. J. (2021). The 2021 battery technology roadmap. Journal of Physics D: Applied Physics, 54(18), 183001. 10.1088/1361-6463/abd353
  • [26] Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601-605.
  • [27] Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G., & Liang, Z. (2022). Progress, Key Issues, and Future Prospects for Li‐Ion Battery Recycling. Global Challenges, 2200067. https://doi.org/10.1002/gch2.202200067
  • [28] Fatima, N., Solangi, N., Safdar, F., & Kumar, J. (2022). A short overview of recycling and treatment of spent LiFePO4 battery. North Am. Acad. Res., 5(7), 76-87. https://doi.org/10.5281/zenodo.6970023
  • [29] Fujita, T., Chen, H., Wang, K. T., He, C. L., Wang, Y. B., Dodbiba, G., & Wei, Y. Z. (2021). Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. International Journal of Minerals, Metallurgy and Materials, 28, 179-192.
  • [30] Pradhan, S., Nayak, R., & Mishra, S. (2022). A review on the recovery of metal values from spent nickel metal hydride and lithium-ion batteries. International Journal of Environmental Science and Technology, 19(5), 4537-4554.
  • [31] Kumawat, S., Singh, D., & Saini, A. (2022). Recycling of spent lithium-iron phosphate batteries: toward closing the loop. Materials and Manufacturing Processes, 1-16. https://doi.org/10.1080/10426914.2022.2136387
  • [32] Shah, J. Boom in LFP Battery Use on the Way but Not Without Hurdles; Saur Energy International. https://www.saurenergy.com/opinion/boom-in-lfp-battery-use-on-the-way-but-not-without-hurdles
  • [33] Pathi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997). Phospho-olivine as positive electrode for rechargeable Lithium-ion batteries. J Electrochem. Soc, 144(4), 1188-1194. 10.1149/1.1837571
  • [34] Takahashi, M., Tobishima, S. I., Takei, K., & Sakurai, Y. (2002). Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid state ionics, 148(3-4), 283-289. https://doi.org/10.1016/S0167-2738(02)00064-4
  • [35] Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen, J. T., Huang, Y. H., & Goodenough, J. B. (2011). Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. Energy & Environmental Science, 4(2), 269-284. https://doi.org/10.1039/C0EE00029A
  • [36] Zhang, Y., Huo, Q. Y., Du, P. P., Wang, L. Z., Zhang, A. Q., Song, Y. H., ... & Li, G. Y. (2012). Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 162(13-14), 1315-1326. https://doi.org/10.1016/j.synthmet.2012.04.025
  • [37] Xu, B., Qian, D., Wang, Z., & Meng, Y. S. (2012). Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 73(5-6), 51-65.
  • [38] Li, J., & Ma, Z. F. (2019). Past and present of LiFePO4: from fundamental research to industrial applications. Chem, 5(1), 3-6. https://doi.org/10.1016/j.mser.2012.05.003
  • [39] Liu, W., Liu, H., Liu, W., & Cui, Z. (2021). Life cycle assessment of power batteries used in electric bicycles in China. Renewable and Sustainable Energy Reviews, 139, 110596. https://doi.org/10.1016/j.rser.2020.110596
  • [40] SWD. (2018). 36 final, Commission Staff Working Document. Report on Critical Raw Materials and the Circular Economy.
  • [41] Zhang, W. J. (2011). Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources, 196(6), 2962-2970. https://doi.org/10.1016/j.jpowsour.2010.11.113
  • [42] Li, L., Wu, L., Wu, F., Song, S., Zhang, X., Fu, C., Yuan, D. & Xiang, Y. (2017). recent research progress in surface modification of LiFePO4 cathode materials. Journal of the Electrochemical Society, 164(9), A2138. 10.1149/2.1571709jes
  • [43] Zheng, J., Hou, Y., Duan, Y., Song, X., Wei, Y., Liu, T., Hu, J., Guo, H., Zhuo, Z., Liu, L., Chang, Z., Wang, X., Zherebetskyy, D., Fang, Y., Lin, Y., Xu, K., Wang, L. W., Wu, Y. & Pan, F. (2015). Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano letters, 15(9), 6102-6109. https://doi.org/10.1021/acs.nanolett.5b02379
  • [44] Astafev, E. (2020). Electrochemical noise measurement of a lithium iron (II) phosphate (LiFePO4) rechargeable battery. Instrumentation Science & Technology, 48(1), 75-85. https://doi.org/10.1080/10739149.2019.1658601
  • [45] Yin-quan, H., He-ping, L., Yi, Z., & Kai-feng, L. (2011). Charging method research for lithium iron phosphate battery. Procedia Engineering, 15, 4367-4371. https://doi.org/10.1016/j.proeng.2011.08.820
  • [46] Omar, H., & Rohani, S. (2015). Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering, 9, 15-32.
  • [47] Kumar, J., Neiber, R. R., Park, J., Ali Soomro, R., Greene, W., Ali Mazari, S., Seo, H. Y., Lee, J. H., Shon, M., Chang, D. W. & Yong Cho, K. (2022). Recent progress in sustainable recycling of LiFePO₄-type lithium-ion batteries: Strategies for highly selective lithium recovery. https://doi.org/10.1016/j.cej.2021.133993
  • [48] Wang, W., & Wu, Y. (2017). An overview of recycling and treatment of spent LiFePO4 batteries in China. Resources, Conservation and Recycling, 127, 233-243. https://doi.org/10.1016/j.resconrec.2017.08.019
  • [49] Elwert, T., Hua, Q. S., & Schneider, K. (2019). Recycling of lithium iron phosphate batteries: Future prospects and research needs. In Materials Science Forum (Vol. 959, pp. 49-68). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.959.49
  • [50] Baes, K.; Kolk, M.; Carlot, F.; Merhaba, A.; Ito, Y. Future of Batteries; Arthur d Little. https://www.adlittle.com/en/insights/viewpoints/future-batteries
  • [51] Sojka, R.; Pan, Q.; Billmann, L. Comparitive Study of Li-Ion Battery Recycling Processes; 2020.
  • [52] Sen, P. K. (2015). TT Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy, and Material Characterization, edited by Shije Wang, John E. Dutrizac, Michael L. Free, James Y. Hwang, and Daniel Kim: John Wiley & Sons, Inc., Hoboken, NJ, 2012, 804 Pp., ISBN: 978-1-11829-123-8. Materials and Manufacturing Processes, 30(8), 1051-1052. https://doi.org/10.1080/10426914.2014.984228
  • [53] Cai, G., Fung, K. Y., Ng, K. M., & Wibowo, C. (2014). Process development for the recycle of spent lithium ion batteries by chemical precipitation. Industrial & Engineering Chemistry Research, 53(47), 18245-18259. https://doi.org/10.1021/ie5025326
  • [54] Chagnes, A., & Pospiech, B. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Journal of Chemical Technology & Biotechnology, 88(7), 1191-1199. https://doi.org/10.1002/jctb.4053
  • [55] Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. https://doi.org/10.1016/j.jpowsour.2018.07.116
  • [56] Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482.
  • [57] Elwert, T., Römer, F., Schneider, K., Hua, Q., & Buchert, M. (2018). Recycling of batteries from electric vehicles. Behaviour of lithium-ion batteries in electric vehicles: battery health, performance, safety, and cost, 289-321.
  • [58] Yang, Y., Meng, X., Cao, H., Lin, X., Liu, C., Sun, Y., Zhang, Y. & Sun, Z. (2018). Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chemistry, 20(13), 3121-3133. https://doi.org/10.1039/C7GC03376A
  • [59] Zeng, X., Li, J., & Singh, N. (2014). Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165. https://doi.org/10.1080/10643389.2013.763578
  • [60] Or, T., Gourley, S. W., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6-43. https://doi.org/10.1002/cey2.29
  • [61] Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6(2), 1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811
  • [62] Chen, J., Li, Q., Song, J., Song, D., Zhang, L., & Shi, X. (2016). Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO 4 batteries. Green Chemistry, 18(8), 2500-2506. https://doi.org/10.1039/C5GC02650D
  • [63] Reece, S. M., Sinha, A., & Grieshop, A. P. (2017). Primary and photochemically aged aerosol emissions from biomass cookstoves: chemical and physical characterization. Environmental science & technology, 51(16), 9379-9390. https://doi.org/10.1021/acs.est.7b01881
  • [64] Bi, H., Zhu, H., Zu, L., He, S., Gao, Y., & Peng, J. (2019). Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries. Waste Management & Research, 37(8), 767-780. https://doi.org/10.1177/0734242X19855432
  • [65] Bi, H., Zhu, H., Zu, L., Gao, Y., Gao, S., & Bai, Y. (2020). Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Waste Management & Research, 38(8), 911-920. https://doi.org/10.1177/0734242X20931933
  • [66] Xiao, J.; Li, J.; Xu, Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environ. Sci. Technol. 2020, 54(1), 9–25. DOI: 10.1021/acs.est.9b03725. https://doi.org/10.1021/acs.est.9b03725
  • [67] Nayaka, G. P., Pai, K. V., Manjanna, J., & Keny, S. J. (2016). Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste management, 51, 234-238. https://doi.org/10.1016/j.wasman.2015.12.008
  • [68] Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C. & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of power sources, 147(1-2), 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  • [69] Nie, H., Xu, L., Song, D., Song, J., Shi, X., Wang, X., Zhang, L. & Yuan, Z. (2015). LiCoO 2: recycling from spent batteries and regeneration with solid state synthesis. Green chemistry, 17(2), 1276-1280. https://doi.org/10.1039/C4GC01951B
  • [70] Zhong, X., Liu, W., Han, J., Jiao, F., Qin, W., Liu, T., & Zhao, C. (2019). Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries. Waste Management, 89, 83-93. https://doi.org/10.1016/j.wasman.2019.03.068
  • [71] Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L. & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. nature, 575(7781), 75-86.
  • [72] Diekmann, J., Hanisch, C., Froböse, L., Schälicke, G., Loellhoeffel, T., Fölster, A. S., & Kwade, A. (2016). Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the electrochemical society, 164(1), A6184. 10.1149/2.0271701jes
  • [73] Sonoc, A., Jeswiet, J., & Soo, V. K. (2015). Opportunities to improve recycling of automotive lithium ion batteries. Procedia Cirp, 29, 752-757. https://doi.org/10.1016/j.procir.2015.02.039
  • [74] Li, L., Lu, J., Zhai, L., Zhang, X., Curtiss, L., Jin, Y., Wu, F., Chen, R. & Amine, K. (2018). A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 4(2), 219-225. 10.17775/CSEEJPES.2016.01880
  • [75] Li, J., Wang, Y., Wang, L., Liu, B., & Zhou, H. (2019). A facile recycling and regeneration process for spent LiFePO 4 batteries. Journal of Materials Science: Materials in Electronics, 30, 14580-14588.
  • [76] Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., & Chang, Z. (2018). Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 7(1), 1289-1299. https://doi.org/10.1021/acssuschemeng.8b04939
  • [77] Song, X., Hu, T., Liang, C., Long, H. L., Zhou, L., Song, W., You, L., Wu, Z. S. & Liu, J. W. (2017). Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC advances, 7(8), 4783-4790. 10.1039/C6RA27210J
  • [78] Yang, Y., Zheng, X., Cao, H., Zhao, C., Lin, X., Ning, P., Zhang, Y., Jin, W. & Sun, Z. (2017). A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustainable Chemistry & Engineering, 5(11), 9972-9980. https://doi.org/10.1021/acssuschemeng.7b01914
  • [79] Shi, Y., Zhou, X., & Yu, G. (2017). Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Accounts of chemical research, 50(11), 2642-2652. https://doi.org/10.1021/acs.accounts.7b00402
  • [80] Kang, G. D., & Cao, Y. M. (2014). Application and modification of poly (vinylidene fluoride) (PVDF) membranes–a review. Journal of membrane science, 463, 145-165. https://doi.org/10.1016/j.memsci.2014.03.055
  • [81] El Mohajir, B. E., & Heymans, N. (2001). Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 42(13), 5661-5667. https://doi.org/10.1016/S0032-3861(01)00064-7
  • [82] Gören, A., Costa, C. M., Silva, M. M., & Lanceros-Mendez, S. J. S. S. I. (2016). Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes. Solid State Ionics, 295, 57-64. https://doi.org/10.1016/j.ssi.2016.07.012
  • [83] He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of The Total Environment, 766, 142382. https://doi.org/10.1016/j.scitotenv.2020.142382
  • [84] Jiang, X. T., Wang, P., Li, L. H., Yu, J., Yin, Y. X., & Hou, F. (2019). Recycling process for spent cathode materials of LiFePO4 batteries. In Materials Science Forum (Vol. 943, pp. 141-148). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.943.141
  • [85] Li, H., Xing, S., Liu, Y., Li, F., Guo, H., & Kuang, G. (2017). Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS sustainable chemistry & engineering, 5(9), 8017-8024. https://doi.org/10.1021/acssuschemeng.7b01594
  • [86] Bian, D., Sun, Y., Li, S., Tian, Y., Yang, Z., Fan, X., & Zhang, W. (2016). A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers. Electrochimica Acta, 190, 134-140. https://doi.org/10.1016/j.electacta.2015.12.114
  • [87] Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R. & Dai, C. (2016). Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. Rsc Advances, 6(49), 43613-43625. https://doi.org/10.1039/C6RA05477C
  • [88] Bi, H., Zhu, H., Zu, L., Gao, Y., Gao, S., Peng, J., & Li, H. (2021). Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries. Waste Management & Research, 39(1), 146-155. https://doi.org/10.1177/0734242X20957403
  • [89] Yadav, P., Jie, C. J., Tan, S., & Srinivasan, M. (2020). Recycling of cathode from spent lithium iron phosphate batteries. Journal of Hazardous Materials, 399, 123068. https://doi.org/10.1016/j.jhazmat.2020.123068
  • [90] Yang, Y., Huang, G., Xu, S., He, Y., & Liu, X. (2016). Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy, 165, 390-396. https://doi.org/10.1016/j.hydromet.2015.09.025
  • [91] Öhl, J., Horn, D., Zimmermann, J., Stauber, R., & Gutfleisch, O. (2019). Efficient process for Li-ion battery recycling via electrohydraulic fragmentation. In Materials Science Forum (Vol. 959, pp. 74-78). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.959.74
  • [92] Kumar, J., Neiber, R. R., Park, J., Soomro, R. A., Greene, G. W., Mazari, S. A., Seo, H. Y., Lee, J. H., Shon, M., Chang, D. W. & Cho, K. Y. (2022). Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chemical Engineering Journal, 431, 133993. https://doi.org/10.1016/j.cej.2021.133993
  • [93] Dorella, G., & Mansur, M. B. (2007). A study of the separation of cobalt from spent Li-ion battery residues. Journal of power sources, 170(1), 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  • [94] Kwon, O. S., & Sohn, I. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resources, Conservation and Recycling, 158, 104809. https://doi.org/10.1016/j.resconrec.2020.104809
  • [95] Jung, J. C. Y., Sui, P. C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage, 35, 102217. https://doi.org/10.1016/j.est.2020.102217
  • [96] Li, L., Bian, Y., Zhang, X., Yao, Y., Xue, Q., Fan, E., Wu, F. & Chen, R. (2019). A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste management, 85, 437-444. https://doi.org/10.1016/j.wasman.2019.01.012
  • [97] Calvo, E. J. (2019). Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Current Opinion in Electrochemistry, 15, 102-108. https://doi.org/10.1016/j.coelec.2019.04.010
  • [98] Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva Junior, W., & Wu, K. (2022). Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies, 15(6), 2203. https://doi.org/10.3390/en15062203
  • [99] Castro, F. D., Mehner, E., Cutaia, L., & Vaccari, M. (2022). Life cycle assessment of an innovative lithium-ion battery recycling route: A feasibility study. Journal of Cleaner Production, 368, 133130. https://doi.org/10.1016/j.jclepro.2022.133130
  • [100] Zhang, B., Qu, X., Chen, X., Liu, D., Zhao, Z., Xie, H., Wang, D. & Yin, H. (2022). A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. Journal of Hazardous Materials, 424, 127586. https://doi.org/10.1016/j.jhazmat.2021.127586
  • [101] Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 180, 106144. https://doi.org/10.1016/j.resconrec.2021.106144
  • [102] Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M., & Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47(2-3), 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  • [103] Laali, K. K., Greves, W. J., Correa-Smits, S. J., Zwarycz, A. T., Bunge, S. D., Borosky, G. L., Manna, A., Paulus, A. & Chanan-Khan, A. (2018). Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: Synthesis, structural studies, Computational/Docking and in-vitro bioassay. Journal of Fluorine Chemistry, 206, 82-98. https://doi.org/10.1016/j.jfluchem.2017.11.013
  • [104] Hung, S. H., Lin, C. F., Chiang, P. C., Tsai, T. H., & Peng, C. Y. (2014). Recovery of metal ions from spent Lithium Ion Batteries (LIBs) using sodium salts of D2EHPA or P507: Performance evaluation and life cycle assessment. Res. J. Chem. Environ, 18, 39-47.
  • [105] Kang, J., Senanayake, G., Sohn, J., & Shin, S. M. (2010). Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy, 100(3-4), 168-171. https://doi.org/10.1016/j.hydromet.2009.10.010
  • [106] Lee, J. Y., Pranolo, Y., Zhang, W., & Cheng, C. Y. (2010). The Recovery of Zinc and Manganese from Synthetic Spent‐Battery Leach Solutions by Solvent Extraction. Solvent Extraction and Ion Exchange, 28(1), 73-84. https://doi.org/10.1080/07366290903409043
  • [107] Chan, G. G., Koch, C. M., & Connors, L. H. (2017). Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis. Journal of Proteome Research, 16(4), 1659-1668. https://doi.org/10.1021/acs.jproteome.6b00998
  • [108] Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., Leal, J. P., Gasche, T. A., Kucuker, M. A., Kuchta, K., Neto, I. F. F., Soares, H. M. V. M. & Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical reviews in environmental science and technology, 49(3), 212-275. https://doi.org/10.1080/10643389.2018.1540760
  • [109] Wang, J., & Sun, X. (2012). Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 5(1), 5163-5185. 10.1039/C1EE01263K
  • [110] Miao, Y., Liu, L., Zhang, Y., Tan, Q., & Li, J. (2022). An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425, 127900. https://doi.org/10.1016/j.jhazmat.2021.127900
  • [111] Gunarathne, V., Rajapaksha, A. U., Vithanage, M., Alessi, D. S., Selvasembian, R., Naushad, M., You, S., Oleszczuk, P. & Ok, Y. S. (2022). Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 52(6), 1022-1062. https://doi.org/10.1080/10643389.2020.1847949
  • [112] Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/10.1016/j.rser.2015.12.363
  • [113] Rocchetti, L., Vegliò, F., Kopacek, B., & Beolchini, F. (2013). Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant. Environmental science & technology, 47(3), 1581-1588. https://doi.org/10.1021/es302192t
  • [114] Tao, S., Li, J., Wang, L., Hu, L., & Zhou, H. (2019). A method for recovering Li 3 PO 4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics, 25, 5643-5653.
  • [115] Song, Y., Xie, B., Song, S., Lei, S., Sun, W., Xu, R., & Yang, Y. (2021). Regeneration of LiFePO₄ from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis. https://doi.org/10.1039/D1GC00483B
  • [116] Jing, Q., Zhang, J., Liu, Y., Yang, C., Ma, B., Chen, Y., & Wang, C. (2019). E-pH diagrams for the Li-Fe-P-H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. The Journal of Physical Chemistry C, 123(23), 14207-14215. https://doi.org/10.1021/acs.jpcc.9b02074
  • [117] Fan, M. C., Zhao, Y., Kang, Y. Q., Wozny, J., Liang, Z., Wang, J. X., Zhou, G. M., Li, B. H., Tavajohi, N. & Kang, F. Y. (2022). Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Metals, 41(5), 1595-1604.
  • [118] Schurmans, M., & Thijs, B. (2012). Process for the Recovery of Lithium and Iron from LFP Batteries. World Patent WO, 72619, A1.
  • [119] Zhang, J.; Hu, J.; Liu, Y.; Jing, Q.; Yang, C.; Chen, Y.; Wang, C. Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFepo4 Batteries. ACS Sustain. Chem. Eng. 2019, 7(6), 5626–5631. DOI: 10.1021/acssuschemeng.9b00404. https://doi.org/10.1021/acssuschemeng.9b00404
  • [120] Liu, K., Yang, S., Lai, F., Li, Q., Wang, H., Tao, T., Xiang, D. & Zhang, X. (2021). Application of H 4 P 2 O 7 as leaching acid in one-step selective recovery for metals from spent LiFePO 4 batteries. Ionics, 27, 5127-5135.
  • [121] Qiu, X., Zhang, B., Xu, Y., Hu, J., Deng, W., Zou, G., Hou, H., Yang, Y., Sun, W., Hu, Y., Cao, X. & Ji, X. (2022). Enabling the sustainable recycling of LiFePO 4 from spent lithium-ion batteries. Green Chemistry, 24(6), 2506-2515. https://doi.org/10.1039/D1GC04784A
  • [122] Wang, X., Wang, X., Zhang, R., Wang, Y., & Shu, H. (2018). Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source. Waste management, 78, 208-216. https://doi.org/10.1016/j.wasman.2018.05.029
  • [123] Shentu, H., Xiang, B., Cheng, Y. J., Dong, T., Gao, J., & Xia, Y. (2021). A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environmental Technology & Innovation, 23, 101569. https://doi.org/10.1016/j.eti.2021.101569
  • [124] Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., & Zaghib, K. (2020). Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials, 13(3), 801. https://doi.org/10.3390/ma13030801
  • [125] Li, X., Zhang, J., Song, D., Song, J., & Zhang, L. (2017). Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. Journal of Power Sources, 345, 78-84. https://doi.org/10.1016/j.jpowsour.2017.01.118
  • [126] Kumari, A., Jha, M. K., Lee, J. C., & Singh, R. P. (2016). Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs. Journal of Cleaner Production, 112, 4826-4834. https://doi.org/10.1016/j.jclepro.2015.08.018
  • [127] Mahandra, H., & Ghahreman, A. (2021). A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resources, Conservation and Recycling, 175, 105883. https://doi.org/10.1016/j.resconrec.2021.105883
  • [128] Yang, C., Zhang, J. L., Jing, Q. K., Liu, Y. B., Chen, Y. Q., & Wang, C. Y. (2021). Recovery and regeneration of LiFePO 4 from spent lithium-ion batteries via a novel pretreatment process. International Journal of Minerals, Metallurgy and Materials, 28, 1478-1487.
  • [129] Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
  • [130] Zeng, X., Li, J., & Shen, B. (2015). Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of hazardous materials, 295, 112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064
  • [131] He, L. P., Sun, S. Y., Mu, Y. Y., Song, X. F., & Yu, J. G. (2017). Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustainable Chemistry & Engineering, 5(1), 714-721. https://doi.org/10.1021/acssuschemeng.6b02056
  • [132] Wang, Q., Sun, J., Chu, G., Yao, X., & Chen, C. (2007). Effect of LiPF 6 on the thermal behaviors of four organic solvents for lithium ion batteries. Journal of thermal analysis and calorimetry, 89(1), 245-250. https://doi.org/10.1007/s10973-006-7534-1
  • [133] Wiemers-Meyer, S., Jeremias, S., Winter, M., & Nowak, S. (2016). Influence of battery cell components and water on the thermal and chemical stability of LiPF6 based lithium ion battery electrolytes. Electrochimica acta, 222, 1267-1271. https://doi.org/10.1016/j.electacta.2016.11.100
  • [134] Larsson, F., Andersson, P., Blomqvist, P., & Mellander, B. E. (2017). Toxic fluoride gas emissions from lithium-ion battery fires. Scientific reports, 7(1), 1-13.
  • [135] Larsson, F., Andersson, P., Blomqvist, P., Lorén, A., & Mellander, B. E. (2014). Characteristics of lithium-ion batteries during fire tests. Journal of Power Sources, 271, 414-420. https://doi.org/10.1016/j.jpowsour.2014.08.027
  • [136] Peng, Y., Yang, L., Ju, X., Liao, B., Ye, K., Li, L., Cao, B. & Ni, Y. (2020). A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. Journal of hazardous materials, 381, 120916. https://doi.org/10.1016/j.jhazmat.2019.120916
  • [137] Dunn, J. B., Gaines, L., Kelly, J. C., James, C., & Gallagher, K. G. (2015). The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy & Environmental Science, 8(1), 158-168. 10.1039/C4EE03029J
  • [138] Liang, Y., Su, J., Xi, B., Yu, Y., Ji, D., Sun, Y., Cui, C. & Zhu, J. (2017). Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resources, conservation and recycling, 117, 285-293.
  • [139] Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Rivas, M. H., & Van Mierlo, J. (2015). Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. Journal of cleaner production, 108, 354-362. https://doi.org/10.1016/j.jclepro.2015.06.021
  • [140] Xie, J., Gao, F., Gong, X., Wang, Z., Liu, Y., & Sun, B. (2018). Life cycle assessment of LFP cathode material production for power lithium-ion batteries. In Advances in Energy and Environmental Materials: Proceedings of Chinese Materials Conference 2017 18th (pp. 513-522). Springer Singapore.
  • [141] Ioakimidis, C. S., Murillo-Marrodán, A., Bagheri, A., Thomas, D., & Genikomsakis, K. N. (2019). Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios. Sustainability, 11(9), 2527. https://doi.org/10.3390/su11092527
  • [142] Ciez, R. E., & Whitacre, J. F. (2019). Examining different recycling processes for lithium-ion batteries. Nature Sustainability, 2(2), 148-156.
  • [143] Ellingsen, L. A. W., Hung, C. R., & Strømman, A. H. (2017). Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transportation Research Part D: Transport and Environment, 55, 82-90. https://doi.org/10.1016/j.trd.2017.06.028
  • [144] Nordelöf, A., Poulikidou, S., Chordia, M., Bitencourt de Oliveira, F., Tivander, J., & Arvidsson, R. (2019). Methodological approaches to end-of-life modelling in life cycle assessments of lithium-ion batteries. Batteries, 5(3), 51. https://doi.org/10.3390/batteries5030051
  • [145] USGS (2023) Mineral Commodity Summaries 2023. United States Geological Survey. https://doi.org/10.3133/mcs2023
  • [146] Kelleher Environmental, 2019. Research Study on Reuse and Recycling of Batteries Employed in Electric Vehicles.
  • [147] Duehnen, S., Betz, J., Kolek, M., Schmuch, R., Winter, M., & Placke, T. (2020). Toward green battery cells: Perspective on materials and technologies. Small Methods, 4(7), 2000039. https://doi.org/10.1002/smtd.202000039
  • [148] Windisch-Kern, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., Scherhaufer, B., Raupenstrauch, H., Pomberger, R., Antrekowitsch, H. & Part, F. (2022). Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste management, 138, 125-139. https://doi.org/10.1016/j.wasman.2021.11.038
  • [149] Sommerville, R., Zhu, P., Rajaeifar, M. A., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165, 105219. https://doi.org/10.1016/j.resconrec.2020.105219 [150] Celep, O., Yazıcı, E. Y., Deveci, H., & Dorfling, C. (2023). Recovery of lithium, cobalt and other metals from lithium-ion batteries. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 384-400.

Recycling of Spent LFP Batteries

Yıl 2023, , 997 - 1023, 28.12.2023
https://doi.org/10.29109/gujsc.1332596

Öz

In recent years, recovery of valuable metals from spent lithium-ion batteries (LIBs) has become important because of their high potential for environmental impacts and inability to use metallic resources sustainably. The amount of spent lithium iron phosphate (LFP) batteries is increasing daily as the use of LFP batteries from different LIBs types has become widespread due to low cost and high-security advantages. Accordingly, recovering valuable metals in spent LFP batteries is very important as most manufacturing and automotive companies are moving toward LFP materials. Spent LFP batteries have received less attention due to the small number of valuable metals they contain, although spent battery recycling methods have improved the economy, the environment, and human health. Developing economical Li recovery technologies is crucial for the long-term growth and benefits of the electric vehicle and spent LFP battery industries. The current review article reports the problems related to the recycling process of batteries, the need to extract valuable metals and possible procedures for battery recycling. Methods such as mechanical pre-treatment of cells, and hydrometallurgical process of the active cathode material appear to be the most efficient method option for spent LFP battery recycling. In addition, recovery of components and metals from active materials after discharge methods, safe removal, and pre-treatment is predominantly carried out by hydrometallurgical methods. The need for further scaling up of these technologies and the main challenges are presented and discussed here. It is believed the proposed review would be helpful to understand the overall spent LFP battery recycling approach.

Proje Numarası

23LÖT067

Kaynakça

  • [1] Thomson, I., & Charnock, R. (2022). Engaging with the IPCC on Climate Finance: A Call to Action and Platform for Social and Environmental Accounting Scholars. Social and Environmental Accountability Journal, 42(1-2), 1-10. https://doi.org/10.1080/0969160X.2022.2085131
  • [2] Mansouri Kouhestani, F., Byrne, J., Johnson, D., Spencer, L., Brown, B., Hazendonk, P., & Scott, J. (2020). Multi-criteria PSO-based optimal design of grid-connected hybrid renewable energy systems. International Journal of Green Energy, 17(11), 617-631. https://doi.org/10.1080/15435075.2020.1779072
  • [3] Maiyalagan, T., & Elumalai, P. (Eds.). (2021). Rechargeable Lithium-ion Batteries: Trends and Progress in Electric Vehicles. CRC Press.
  • [4] Scrosati, B., Garche, J., & Tillmetz, W. (Eds.). (2015). Advances in battery technologies for electric vehicles. Woodhead Publishing.
  • [5] Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., Yu, D., Liu, Y., Titirici, M. M., Chueh, Y. L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6-32. https://doi.org/10.1002/inf2.12000
  • [6] Butt, A., Ali, G., Tul Kubra, K., Sharif, R., Salman, A., Bashir, M., & Jamil, S. (2022). Recent Advances in Enhanced Performance of Ni‐Rich Cathode Materials for Li‐Ion Batteries: A Review. Energy Technology, 10(3), 2100775. https://doi.org/10.1002/ente.202100775
  • [7] Steward, D., Mayyas, A., & Mann, M. (2019). Economics and challenges of Li-ion battery recycling from end-of-life vehicles. Procedia Manufacturing, 33, 272-279. https://doi.org/10.1016/j.promfg.2019.04.033 [8] Raj, T., Chandrasekhar, K., Kumar, A. N., Sharma, P., Pandey, A., Jang, M., Jeon, B. H., Varjani, S. & Kim, S. H. (2022). Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 429, 128312. https://doi.org/10.1016/j.jhazmat.2022.128312
  • [9] Andwari, A. M., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430. https://doi.org/10.1016/j.rser.2017.03.138
  • [10] Wang, M., Liu, K., Dutta, S., Alessi, D. S., Rinklebe, J., Ok, Y. S., & Tsang, D. C. (2022). Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews, 163, 112515. https://doi.org/10.1016/j.rser.2022.112515
  • [11] Alfaro-Algaba, M., & Ramirez, F. J. (2020). Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resources, Conservation and Recycling, 154, 104461. https://doi.org/10.1016/j.resconrec.2019.104461
  • [12] Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R. & Wu, F. (2020). Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chemical reviews, 120(14), 7020-7063. https://doi.org/10.1021/acs.chemrev.9b00535
  • [13] Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of power sources, 195(4), 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  • [14] Qiao, H., & Wei, Q. (2012). Functional nanofibers in lithium-ion batteries. In Functional Nanofibers and their Applications (pp. 197-208). Woodhead Publishing. https://doi.org/10.1533/9780857095640.2.197
  • [15] Forte, F., Pietrantonio, M., Pucciarmati, S., Puzone, M., & Fontana, D. (2021). Lithium iron phosphate batteries recycling: An assessment of current status. Critical Reviews in Environmental Science and Technology, 51(19), 2232-2259. https://doi.org/10.1080/10643389.2020.1776053
  • [16] Ali, H., Khan, H. A., & Pecht, M. G. (2021). Circular economy of Li Batteries: Technologies and trends. Journal of Energy Storage, 40, 102690. https://doi.org/10.1016/j.est.2021.102690
  • [17] Zeng, X., Li, J., & Shen, B. (2015). Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of hazardous materials, 295, 112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064
  • [18] Tan, Q., & Li, J. (2015). Recycling metals from wastes: a novel application of mechanochemistry. Environmental science & technology, 49(10), 5849-5861. https://doi.org/10.1021/es506016w
  • [19] Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
  • [20] Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D., & Wang, Y. (2016). Current and prospective Li-ion battery recycling and recovery processes. Jom, 68, 2632-2638.
  • [21] Buchert, M., & Sutter, J. (2015). Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien.
  • [22] Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. Mrs Bulletin, 40(12), 1067-1078. https://doi.org/10.1557/mrs.2015.259
  • [23] Blomgren, G. E. (2016). The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), A5019. 10.1149/2.0251701jes
  • [24] Pickett, L., Winnet, J., Carver, D., & Bolton, P. (2021). Electric vehicles and infrastructure. House of Commons Library: London, UK.
  • [25] Ma, J., Li, Y., Grundish, N. S., Goodenough, J. B., Chen, Y., Guo, L., Peng, Z., Qi, X., Yang, F., Qie, L., Wang, C. A., Huang, B., Huang, Z., Chen, L., Su, D., Wang, G., Peng, X., Chen, Z., Yang, J., He, S., Zhang, X., Yu, H., Fu, C., Jiang, M., Deng, W., Sun, C. F., Pan, Q., Tang, Y., Li, X., Ji, X., Wan, F., Niu, Z., Lian, F., Wang, C., Wallace, G., Fan, M., Meng, Q., Xin, S., Guo, Y. G. & Wan, L. J. (2021). The 2021 battery technology roadmap. Journal of Physics D: Applied Physics, 54(18), 183001. 10.1088/1361-6463/abd353
  • [26] Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601-605.
  • [27] Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G., & Liang, Z. (2022). Progress, Key Issues, and Future Prospects for Li‐Ion Battery Recycling. Global Challenges, 2200067. https://doi.org/10.1002/gch2.202200067
  • [28] Fatima, N., Solangi, N., Safdar, F., & Kumar, J. (2022). A short overview of recycling and treatment of spent LiFePO4 battery. North Am. Acad. Res., 5(7), 76-87. https://doi.org/10.5281/zenodo.6970023
  • [29] Fujita, T., Chen, H., Wang, K. T., He, C. L., Wang, Y. B., Dodbiba, G., & Wei, Y. Z. (2021). Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. International Journal of Minerals, Metallurgy and Materials, 28, 179-192.
  • [30] Pradhan, S., Nayak, R., & Mishra, S. (2022). A review on the recovery of metal values from spent nickel metal hydride and lithium-ion batteries. International Journal of Environmental Science and Technology, 19(5), 4537-4554.
  • [31] Kumawat, S., Singh, D., & Saini, A. (2022). Recycling of spent lithium-iron phosphate batteries: toward closing the loop. Materials and Manufacturing Processes, 1-16. https://doi.org/10.1080/10426914.2022.2136387
  • [32] Shah, J. Boom in LFP Battery Use on the Way but Not Without Hurdles; Saur Energy International. https://www.saurenergy.com/opinion/boom-in-lfp-battery-use-on-the-way-but-not-without-hurdles
  • [33] Pathi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997). Phospho-olivine as positive electrode for rechargeable Lithium-ion batteries. J Electrochem. Soc, 144(4), 1188-1194. 10.1149/1.1837571
  • [34] Takahashi, M., Tobishima, S. I., Takei, K., & Sakurai, Y. (2002). Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid state ionics, 148(3-4), 283-289. https://doi.org/10.1016/S0167-2738(02)00064-4
  • [35] Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen, J. T., Huang, Y. H., & Goodenough, J. B. (2011). Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. Energy & Environmental Science, 4(2), 269-284. https://doi.org/10.1039/C0EE00029A
  • [36] Zhang, Y., Huo, Q. Y., Du, P. P., Wang, L. Z., Zhang, A. Q., Song, Y. H., ... & Li, G. Y. (2012). Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 162(13-14), 1315-1326. https://doi.org/10.1016/j.synthmet.2012.04.025
  • [37] Xu, B., Qian, D., Wang, Z., & Meng, Y. S. (2012). Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 73(5-6), 51-65.
  • [38] Li, J., & Ma, Z. F. (2019). Past and present of LiFePO4: from fundamental research to industrial applications. Chem, 5(1), 3-6. https://doi.org/10.1016/j.mser.2012.05.003
  • [39] Liu, W., Liu, H., Liu, W., & Cui, Z. (2021). Life cycle assessment of power batteries used in electric bicycles in China. Renewable and Sustainable Energy Reviews, 139, 110596. https://doi.org/10.1016/j.rser.2020.110596
  • [40] SWD. (2018). 36 final, Commission Staff Working Document. Report on Critical Raw Materials and the Circular Economy.
  • [41] Zhang, W. J. (2011). Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources, 196(6), 2962-2970. https://doi.org/10.1016/j.jpowsour.2010.11.113
  • [42] Li, L., Wu, L., Wu, F., Song, S., Zhang, X., Fu, C., Yuan, D. & Xiang, Y. (2017). recent research progress in surface modification of LiFePO4 cathode materials. Journal of the Electrochemical Society, 164(9), A2138. 10.1149/2.1571709jes
  • [43] Zheng, J., Hou, Y., Duan, Y., Song, X., Wei, Y., Liu, T., Hu, J., Guo, H., Zhuo, Z., Liu, L., Chang, Z., Wang, X., Zherebetskyy, D., Fang, Y., Lin, Y., Xu, K., Wang, L. W., Wu, Y. & Pan, F. (2015). Janus solid–liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano letters, 15(9), 6102-6109. https://doi.org/10.1021/acs.nanolett.5b02379
  • [44] Astafev, E. (2020). Electrochemical noise measurement of a lithium iron (II) phosphate (LiFePO4) rechargeable battery. Instrumentation Science & Technology, 48(1), 75-85. https://doi.org/10.1080/10739149.2019.1658601
  • [45] Yin-quan, H., He-ping, L., Yi, Z., & Kai-feng, L. (2011). Charging method research for lithium iron phosphate battery. Procedia Engineering, 15, 4367-4371. https://doi.org/10.1016/j.proeng.2011.08.820
  • [46] Omar, H., & Rohani, S. (2015). Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering, 9, 15-32.
  • [47] Kumar, J., Neiber, R. R., Park, J., Ali Soomro, R., Greene, W., Ali Mazari, S., Seo, H. Y., Lee, J. H., Shon, M., Chang, D. W. & Yong Cho, K. (2022). Recent progress in sustainable recycling of LiFePO₄-type lithium-ion batteries: Strategies for highly selective lithium recovery. https://doi.org/10.1016/j.cej.2021.133993
  • [48] Wang, W., & Wu, Y. (2017). An overview of recycling and treatment of spent LiFePO4 batteries in China. Resources, Conservation and Recycling, 127, 233-243. https://doi.org/10.1016/j.resconrec.2017.08.019
  • [49] Elwert, T., Hua, Q. S., & Schneider, K. (2019). Recycling of lithium iron phosphate batteries: Future prospects and research needs. In Materials Science Forum (Vol. 959, pp. 49-68). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.959.49
  • [50] Baes, K.; Kolk, M.; Carlot, F.; Merhaba, A.; Ito, Y. Future of Batteries; Arthur d Little. https://www.adlittle.com/en/insights/viewpoints/future-batteries
  • [51] Sojka, R.; Pan, Q.; Billmann, L. Comparitive Study of Li-Ion Battery Recycling Processes; 2020.
  • [52] Sen, P. K. (2015). TT Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy, and Material Characterization, edited by Shije Wang, John E. Dutrizac, Michael L. Free, James Y. Hwang, and Daniel Kim: John Wiley & Sons, Inc., Hoboken, NJ, 2012, 804 Pp., ISBN: 978-1-11829-123-8. Materials and Manufacturing Processes, 30(8), 1051-1052. https://doi.org/10.1080/10426914.2014.984228
  • [53] Cai, G., Fung, K. Y., Ng, K. M., & Wibowo, C. (2014). Process development for the recycle of spent lithium ion batteries by chemical precipitation. Industrial & Engineering Chemistry Research, 53(47), 18245-18259. https://doi.org/10.1021/ie5025326
  • [54] Chagnes, A., & Pospiech, B. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Journal of Chemical Technology & Biotechnology, 88(7), 1191-1199. https://doi.org/10.1002/jctb.4053
  • [55] Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286. https://doi.org/10.1016/j.jpowsour.2018.07.116
  • [56] Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482.
  • [57] Elwert, T., Römer, F., Schneider, K., Hua, Q., & Buchert, M. (2018). Recycling of batteries from electric vehicles. Behaviour of lithium-ion batteries in electric vehicles: battery health, performance, safety, and cost, 289-321.
  • [58] Yang, Y., Meng, X., Cao, H., Lin, X., Liu, C., Sun, Y., Zhang, Y. & Sun, Z. (2018). Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chemistry, 20(13), 3121-3133. https://doi.org/10.1039/C7GC03376A
  • [59] Zeng, X., Li, J., & Singh, N. (2014). Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165. https://doi.org/10.1080/10643389.2013.763578
  • [60] Or, T., Gourley, S. W., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6-43. https://doi.org/10.1002/cey2.29
  • [61] Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6(2), 1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811
  • [62] Chen, J., Li, Q., Song, J., Song, D., Zhang, L., & Shi, X. (2016). Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO 4 batteries. Green Chemistry, 18(8), 2500-2506. https://doi.org/10.1039/C5GC02650D
  • [63] Reece, S. M., Sinha, A., & Grieshop, A. P. (2017). Primary and photochemically aged aerosol emissions from biomass cookstoves: chemical and physical characterization. Environmental science & technology, 51(16), 9379-9390. https://doi.org/10.1021/acs.est.7b01881
  • [64] Bi, H., Zhu, H., Zu, L., He, S., Gao, Y., & Peng, J. (2019). Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries. Waste Management & Research, 37(8), 767-780. https://doi.org/10.1177/0734242X19855432
  • [65] Bi, H., Zhu, H., Zu, L., Gao, Y., Gao, S., & Bai, Y. (2020). Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Waste Management & Research, 38(8), 911-920. https://doi.org/10.1177/0734242X20931933
  • [66] Xiao, J.; Li, J.; Xu, Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environ. Sci. Technol. 2020, 54(1), 9–25. DOI: 10.1021/acs.est.9b03725. https://doi.org/10.1021/acs.est.9b03725
  • [67] Nayaka, G. P., Pai, K. V., Manjanna, J., & Keny, S. J. (2016). Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste management, 51, 234-238. https://doi.org/10.1016/j.wasman.2015.12.008
  • [68] Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C. & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of power sources, 147(1-2), 269-281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  • [69] Nie, H., Xu, L., Song, D., Song, J., Shi, X., Wang, X., Zhang, L. & Yuan, Z. (2015). LiCoO 2: recycling from spent batteries and regeneration with solid state synthesis. Green chemistry, 17(2), 1276-1280. https://doi.org/10.1039/C4GC01951B
  • [70] Zhong, X., Liu, W., Han, J., Jiao, F., Qin, W., Liu, T., & Zhao, C. (2019). Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries. Waste Management, 89, 83-93. https://doi.org/10.1016/j.wasman.2019.03.068
  • [71] Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L. & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. nature, 575(7781), 75-86.
  • [72] Diekmann, J., Hanisch, C., Froböse, L., Schälicke, G., Loellhoeffel, T., Fölster, A. S., & Kwade, A. (2016). Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. Journal of the electrochemical society, 164(1), A6184. 10.1149/2.0271701jes
  • [73] Sonoc, A., Jeswiet, J., & Soo, V. K. (2015). Opportunities to improve recycling of automotive lithium ion batteries. Procedia Cirp, 29, 752-757. https://doi.org/10.1016/j.procir.2015.02.039
  • [74] Li, L., Lu, J., Zhai, L., Zhang, X., Curtiss, L., Jin, Y., Wu, F., Chen, R. & Amine, K. (2018). A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid. CSEE Journal of Power and Energy Systems, 4(2), 219-225. 10.17775/CSEEJPES.2016.01880
  • [75] Li, J., Wang, Y., Wang, L., Liu, B., & Zhou, H. (2019). A facile recycling and regeneration process for spent LiFePO 4 batteries. Journal of Materials Science: Materials in Electronics, 30, 14580-14588.
  • [76] Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., & Chang, Z. (2018). Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 7(1), 1289-1299. https://doi.org/10.1021/acssuschemeng.8b04939
  • [77] Song, X., Hu, T., Liang, C., Long, H. L., Zhou, L., Song, W., You, L., Wu, Z. S. & Liu, J. W. (2017). Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC advances, 7(8), 4783-4790. 10.1039/C6RA27210J
  • [78] Yang, Y., Zheng, X., Cao, H., Zhao, C., Lin, X., Ning, P., Zhang, Y., Jin, W. & Sun, Z. (2017). A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustainable Chemistry & Engineering, 5(11), 9972-9980. https://doi.org/10.1021/acssuschemeng.7b01914
  • [79] Shi, Y., Zhou, X., & Yu, G. (2017). Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Accounts of chemical research, 50(11), 2642-2652. https://doi.org/10.1021/acs.accounts.7b00402
  • [80] Kang, G. D., & Cao, Y. M. (2014). Application and modification of poly (vinylidene fluoride) (PVDF) membranes–a review. Journal of membrane science, 463, 145-165. https://doi.org/10.1016/j.memsci.2014.03.055
  • [81] El Mohajir, B. E., & Heymans, N. (2001). Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 42(13), 5661-5667. https://doi.org/10.1016/S0032-3861(01)00064-7
  • [82] Gören, A., Costa, C. M., Silva, M. M., & Lanceros-Mendez, S. J. S. S. I. (2016). Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes. Solid State Ionics, 295, 57-64. https://doi.org/10.1016/j.ssi.2016.07.012
  • [83] He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of The Total Environment, 766, 142382. https://doi.org/10.1016/j.scitotenv.2020.142382
  • [84] Jiang, X. T., Wang, P., Li, L. H., Yu, J., Yin, Y. X., & Hou, F. (2019). Recycling process for spent cathode materials of LiFePO4 batteries. In Materials Science Forum (Vol. 943, pp. 141-148). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.943.141
  • [85] Li, H., Xing, S., Liu, Y., Li, F., Guo, H., & Kuang, G. (2017). Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS sustainable chemistry & engineering, 5(9), 8017-8024. https://doi.org/10.1021/acssuschemeng.7b01594
  • [86] Bian, D., Sun, Y., Li, S., Tian, Y., Yang, Z., Fan, X., & Zhang, W. (2016). A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers. Electrochimica Acta, 190, 134-140. https://doi.org/10.1016/j.electacta.2015.12.114
  • [87] Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R. & Dai, C. (2016). Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. Rsc Advances, 6(49), 43613-43625. https://doi.org/10.1039/C6RA05477C
  • [88] Bi, H., Zhu, H., Zu, L., Gao, Y., Gao, S., Peng, J., & Li, H. (2021). Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries. Waste Management & Research, 39(1), 146-155. https://doi.org/10.1177/0734242X20957403
  • [89] Yadav, P., Jie, C. J., Tan, S., & Srinivasan, M. (2020). Recycling of cathode from spent lithium iron phosphate batteries. Journal of Hazardous Materials, 399, 123068. https://doi.org/10.1016/j.jhazmat.2020.123068
  • [90] Yang, Y., Huang, G., Xu, S., He, Y., & Liu, X. (2016). Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy, 165, 390-396. https://doi.org/10.1016/j.hydromet.2015.09.025
  • [91] Öhl, J., Horn, D., Zimmermann, J., Stauber, R., & Gutfleisch, O. (2019). Efficient process for Li-ion battery recycling via electrohydraulic fragmentation. In Materials Science Forum (Vol. 959, pp. 74-78). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.959.74
  • [92] Kumar, J., Neiber, R. R., Park, J., Soomro, R. A., Greene, G. W., Mazari, S. A., Seo, H. Y., Lee, J. H., Shon, M., Chang, D. W. & Cho, K. Y. (2022). Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chemical Engineering Journal, 431, 133993. https://doi.org/10.1016/j.cej.2021.133993
  • [93] Dorella, G., & Mansur, M. B. (2007). A study of the separation of cobalt from spent Li-ion battery residues. Journal of power sources, 170(1), 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  • [94] Kwon, O. S., & Sohn, I. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resources, Conservation and Recycling, 158, 104809. https://doi.org/10.1016/j.resconrec.2020.104809
  • [95] Jung, J. C. Y., Sui, P. C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage, 35, 102217. https://doi.org/10.1016/j.est.2020.102217
  • [96] Li, L., Bian, Y., Zhang, X., Yao, Y., Xue, Q., Fan, E., Wu, F. & Chen, R. (2019). A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste management, 85, 437-444. https://doi.org/10.1016/j.wasman.2019.01.012
  • [97] Calvo, E. J. (2019). Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Current Opinion in Electrochemistry, 15, 102-108. https://doi.org/10.1016/j.coelec.2019.04.010
  • [98] Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva Junior, W., & Wu, K. (2022). Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies, 15(6), 2203. https://doi.org/10.3390/en15062203
  • [99] Castro, F. D., Mehner, E., Cutaia, L., & Vaccari, M. (2022). Life cycle assessment of an innovative lithium-ion battery recycling route: A feasibility study. Journal of Cleaner Production, 368, 133130. https://doi.org/10.1016/j.jclepro.2022.133130
  • [100] Zhang, B., Qu, X., Chen, X., Liu, D., Zhao, Z., Xie, H., Wang, D. & Yin, H. (2022). A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. Journal of Hazardous Materials, 424, 127586. https://doi.org/10.1016/j.jhazmat.2021.127586
  • [101] Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 180, 106144. https://doi.org/10.1016/j.resconrec.2021.106144
  • [102] Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M., & Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47(2-3), 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  • [103] Laali, K. K., Greves, W. J., Correa-Smits, S. J., Zwarycz, A. T., Bunge, S. D., Borosky, G. L., Manna, A., Paulus, A. & Chanan-Khan, A. (2018). Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: Synthesis, structural studies, Computational/Docking and in-vitro bioassay. Journal of Fluorine Chemistry, 206, 82-98. https://doi.org/10.1016/j.jfluchem.2017.11.013
  • [104] Hung, S. H., Lin, C. F., Chiang, P. C., Tsai, T. H., & Peng, C. Y. (2014). Recovery of metal ions from spent Lithium Ion Batteries (LIBs) using sodium salts of D2EHPA or P507: Performance evaluation and life cycle assessment. Res. J. Chem. Environ, 18, 39-47.
  • [105] Kang, J., Senanayake, G., Sohn, J., & Shin, S. M. (2010). Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy, 100(3-4), 168-171. https://doi.org/10.1016/j.hydromet.2009.10.010
  • [106] Lee, J. Y., Pranolo, Y., Zhang, W., & Cheng, C. Y. (2010). The Recovery of Zinc and Manganese from Synthetic Spent‐Battery Leach Solutions by Solvent Extraction. Solvent Extraction and Ion Exchange, 28(1), 73-84. https://doi.org/10.1080/07366290903409043
  • [107] Chan, G. G., Koch, C. M., & Connors, L. H. (2017). Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis. Journal of Proteome Research, 16(4), 1659-1668. https://doi.org/10.1021/acs.jproteome.6b00998
  • [108] Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., Leal, J. P., Gasche, T. A., Kucuker, M. A., Kuchta, K., Neto, I. F. F., Soares, H. M. V. M. & Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical reviews in environmental science and technology, 49(3), 212-275. https://doi.org/10.1080/10643389.2018.1540760
  • [109] Wang, J., & Sun, X. (2012). Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 5(1), 5163-5185. 10.1039/C1EE01263K
  • [110] Miao, Y., Liu, L., Zhang, Y., Tan, Q., & Li, J. (2022). An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425, 127900. https://doi.org/10.1016/j.jhazmat.2021.127900
  • [111] Gunarathne, V., Rajapaksha, A. U., Vithanage, M., Alessi, D. S., Selvasembian, R., Naushad, M., You, S., Oleszczuk, P. & Ok, Y. S. (2022). Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 52(6), 1022-1062. https://doi.org/10.1080/10643389.2020.1847949
  • [112] Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/10.1016/j.rser.2015.12.363
  • [113] Rocchetti, L., Vegliò, F., Kopacek, B., & Beolchini, F. (2013). Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant. Environmental science & technology, 47(3), 1581-1588. https://doi.org/10.1021/es302192t
  • [114] Tao, S., Li, J., Wang, L., Hu, L., & Zhou, H. (2019). A method for recovering Li 3 PO 4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics, 25, 5643-5653.
  • [115] Song, Y., Xie, B., Song, S., Lei, S., Sun, W., Xu, R., & Yang, Y. (2021). Regeneration of LiFePO₄ from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis. https://doi.org/10.1039/D1GC00483B
  • [116] Jing, Q., Zhang, J., Liu, Y., Yang, C., Ma, B., Chen, Y., & Wang, C. (2019). E-pH diagrams for the Li-Fe-P-H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. The Journal of Physical Chemistry C, 123(23), 14207-14215. https://doi.org/10.1021/acs.jpcc.9b02074
  • [117] Fan, M. C., Zhao, Y., Kang, Y. Q., Wozny, J., Liang, Z., Wang, J. X., Zhou, G. M., Li, B. H., Tavajohi, N. & Kang, F. Y. (2022). Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Metals, 41(5), 1595-1604.
  • [118] Schurmans, M., & Thijs, B. (2012). Process for the Recovery of Lithium and Iron from LFP Batteries. World Patent WO, 72619, A1.
  • [119] Zhang, J.; Hu, J.; Liu, Y.; Jing, Q.; Yang, C.; Chen, Y.; Wang, C. Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFepo4 Batteries. ACS Sustain. Chem. Eng. 2019, 7(6), 5626–5631. DOI: 10.1021/acssuschemeng.9b00404. https://doi.org/10.1021/acssuschemeng.9b00404
  • [120] Liu, K., Yang, S., Lai, F., Li, Q., Wang, H., Tao, T., Xiang, D. & Zhang, X. (2021). Application of H 4 P 2 O 7 as leaching acid in one-step selective recovery for metals from spent LiFePO 4 batteries. Ionics, 27, 5127-5135.
  • [121] Qiu, X., Zhang, B., Xu, Y., Hu, J., Deng, W., Zou, G., Hou, H., Yang, Y., Sun, W., Hu, Y., Cao, X. & Ji, X. (2022). Enabling the sustainable recycling of LiFePO 4 from spent lithium-ion batteries. Green Chemistry, 24(6), 2506-2515. https://doi.org/10.1039/D1GC04784A
  • [122] Wang, X., Wang, X., Zhang, R., Wang, Y., & Shu, H. (2018). Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source. Waste management, 78, 208-216. https://doi.org/10.1016/j.wasman.2018.05.029
  • [123] Shentu, H., Xiang, B., Cheng, Y. J., Dong, T., Gao, J., & Xia, Y. (2021). A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environmental Technology & Innovation, 23, 101569. https://doi.org/10.1016/j.eti.2021.101569
  • [124] Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., & Zaghib, K. (2020). Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials, 13(3), 801. https://doi.org/10.3390/ma13030801
  • [125] Li, X., Zhang, J., Song, D., Song, J., & Zhang, L. (2017). Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. Journal of Power Sources, 345, 78-84. https://doi.org/10.1016/j.jpowsour.2017.01.118
  • [126] Kumari, A., Jha, M. K., Lee, J. C., & Singh, R. P. (2016). Clean process for recovery of metals and recycling of acid from the leach liquor of PCBs. Journal of Cleaner Production, 112, 4826-4834. https://doi.org/10.1016/j.jclepro.2015.08.018
  • [127] Mahandra, H., & Ghahreman, A. (2021). A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resources, Conservation and Recycling, 175, 105883. https://doi.org/10.1016/j.resconrec.2021.105883
  • [128] Yang, C., Zhang, J. L., Jing, Q. K., Liu, Y. B., Chen, Y. Q., & Wang, C. Y. (2021). Recovery and regeneration of LiFePO 4 from spent lithium-ion batteries via a novel pretreatment process. International Journal of Minerals, Metallurgy and Materials, 28, 1478-1487.
  • [129] Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 136, 418-435. https://doi.org/10.1016/j.resconrec.2018.04.024
  • [130] Zeng, X., Li, J., & Shen, B. (2015). Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of hazardous materials, 295, 112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064
  • [131] He, L. P., Sun, S. Y., Mu, Y. Y., Song, X. F., & Yu, J. G. (2017). Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustainable Chemistry & Engineering, 5(1), 714-721. https://doi.org/10.1021/acssuschemeng.6b02056
  • [132] Wang, Q., Sun, J., Chu, G., Yao, X., & Chen, C. (2007). Effect of LiPF 6 on the thermal behaviors of four organic solvents for lithium ion batteries. Journal of thermal analysis and calorimetry, 89(1), 245-250. https://doi.org/10.1007/s10973-006-7534-1
  • [133] Wiemers-Meyer, S., Jeremias, S., Winter, M., & Nowak, S. (2016). Influence of battery cell components and water on the thermal and chemical stability of LiPF6 based lithium ion battery electrolytes. Electrochimica acta, 222, 1267-1271. https://doi.org/10.1016/j.electacta.2016.11.100
  • [134] Larsson, F., Andersson, P., Blomqvist, P., & Mellander, B. E. (2017). Toxic fluoride gas emissions from lithium-ion battery fires. Scientific reports, 7(1), 1-13.
  • [135] Larsson, F., Andersson, P., Blomqvist, P., Lorén, A., & Mellander, B. E. (2014). Characteristics of lithium-ion batteries during fire tests. Journal of Power Sources, 271, 414-420. https://doi.org/10.1016/j.jpowsour.2014.08.027
  • [136] Peng, Y., Yang, L., Ju, X., Liao, B., Ye, K., Li, L., Cao, B. & Ni, Y. (2020). A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. Journal of hazardous materials, 381, 120916. https://doi.org/10.1016/j.jhazmat.2019.120916
  • [137] Dunn, J. B., Gaines, L., Kelly, J. C., James, C., & Gallagher, K. G. (2015). The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy & Environmental Science, 8(1), 158-168. 10.1039/C4EE03029J
  • [138] Liang, Y., Su, J., Xi, B., Yu, Y., Ji, D., Sun, Y., Cui, C. & Zhu, J. (2017). Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resources, conservation and recycling, 117, 285-293.
  • [139] Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Rivas, M. H., & Van Mierlo, J. (2015). Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. Journal of cleaner production, 108, 354-362. https://doi.org/10.1016/j.jclepro.2015.06.021
  • [140] Xie, J., Gao, F., Gong, X., Wang, Z., Liu, Y., & Sun, B. (2018). Life cycle assessment of LFP cathode material production for power lithium-ion batteries. In Advances in Energy and Environmental Materials: Proceedings of Chinese Materials Conference 2017 18th (pp. 513-522). Springer Singapore.
  • [141] Ioakimidis, C. S., Murillo-Marrodán, A., Bagheri, A., Thomas, D., & Genikomsakis, K. N. (2019). Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios. Sustainability, 11(9), 2527. https://doi.org/10.3390/su11092527
  • [142] Ciez, R. E., & Whitacre, J. F. (2019). Examining different recycling processes for lithium-ion batteries. Nature Sustainability, 2(2), 148-156.
  • [143] Ellingsen, L. A. W., Hung, C. R., & Strømman, A. H. (2017). Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transportation Research Part D: Transport and Environment, 55, 82-90. https://doi.org/10.1016/j.trd.2017.06.028
  • [144] Nordelöf, A., Poulikidou, S., Chordia, M., Bitencourt de Oliveira, F., Tivander, J., & Arvidsson, R. (2019). Methodological approaches to end-of-life modelling in life cycle assessments of lithium-ion batteries. Batteries, 5(3), 51. https://doi.org/10.3390/batteries5030051
  • [145] USGS (2023) Mineral Commodity Summaries 2023. United States Geological Survey. https://doi.org/10.3133/mcs2023
  • [146] Kelleher Environmental, 2019. Research Study on Reuse and Recycling of Batteries Employed in Electric Vehicles.
  • [147] Duehnen, S., Betz, J., Kolek, M., Schmuch, R., Winter, M., & Placke, T. (2020). Toward green battery cells: Perspective on materials and technologies. Small Methods, 4(7), 2000039. https://doi.org/10.1002/smtd.202000039
  • [148] Windisch-Kern, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., Scherhaufer, B., Raupenstrauch, H., Pomberger, R., Antrekowitsch, H. & Part, F. (2022). Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste management, 138, 125-139. https://doi.org/10.1016/j.wasman.2021.11.038
  • [149] Sommerville, R., Zhu, P., Rajaeifar, M. A., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165, 105219. https://doi.org/10.1016/j.resconrec.2020.105219 [150] Celep, O., Yazıcı, E. Y., Deveci, H., & Dorfling, C. (2023). Recovery of lithium, cobalt and other metals from lithium-ion batteries. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 384-400.
Toplam 148 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı ve Tehlikeli Atıklar
Bölüm Tasarım ve Teknoloji
Yazarlar

Gizem Avcı 0009-0000-4726-196X

Alp Özdemir 0000-0003-2834-8669

Proje Numarası 23LÖT067
Erken Görünüm Tarihi 23 Kasım 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 25 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Avcı, G., & Özdemir, A. (2023). Atık LFP Bataryaların Geri Dönüşümü. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(4), 997-1023. https://doi.org/10.29109/gujsc.1332596

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526