Araştırma Makalesi
BibTex RIS Kaynak Göster

Buji ile Ateşlemeli Bir Motorda E85 ve Benzinin NO Emisyonuna Etkilerinin Deneysel İncelenmesi

Yıl 2023, , 1283 - 1295, 28.12.2023
https://doi.org/10.29109/gujsc.1333519

Öz

Enerji ihtiyacı insanoğlunun vazgeçilmez ihtiyaçlarından biridir. Bu noktada önemli olan elde edilebilir kaynağı sürdürülebilir, ekonomik ve ekosisteme duyarlı kullanmaktır. Bu nedenle alternatif yakıtlar bugün olduğu gibi gelecekte de önemini koruyacaktır. İçten yanmalı motorlar konvansiyonel ve hibrit araçlar için güç kaynağı olarak kullanılmaya devam etmektedir. İçten yanmalı motorların sürdürülebilirliği, enerji tüketimine ve emisyon salınımlarına bağlıdır. Bu çalışmada, bir buji ile ateşlemeli motorda ateşleme zamanı ve hava fazlalık katsayısı dikkate alınarak E85 ve benzinin NO emisyonları üzerindeki etkileri deneysel olarak araştırılmıştır. Deneyler, 2000 rpm motor devrinde ve 10:1 sıkıştırma oranında Ricardo Hydra araştırma motorunda gerçekleştirilmiştir. Deneysel sonuçlar, E85 kullanılarak elde edilen motor çıkış gücünün E0'ınkine benzer veya daha fazla olduğunu göstermektedir. E85 için egzoz gazı sıcaklıkları, E0'a kıyasla ortalama 22,6 °C azaldı. E0 ve E85 ile elde edilen tüm deneysel veriler birbiriyle karşılaştırıldığında, kütlesel yakıt tüketiminin ve fren özgül yakıt tüketiminin sırasıyla ortalama %39,3 ve %37,5 arttığı görüldü. Bu çalışmanın sonuçları, özellikle E85'in NO emisyonundaki iyileştirmesinin dikkat çekici olduğunu göstermektedir. 1,05 veya 1,1 hava fazlalık katsayısında maksimum NO noktası dikkate alındığında, E85 ile fren özgül NO emisyonunda %38,4'lük bir azalma elde edildi.

Kaynakça

  • [1] Bechtold RL. (1997). Alternative Fuels Guidebook. Warrendale: Society of Automotive Engineers, Inc.
  • [2] Turner D, Xu H, Cracknell RF, Natarajan V, Chen X. (2011). Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel, 90, 1999-2006. https://doi.org/10.1016/j.fuel.2010.12.025
  • [3] Yu X, Guo Z, Sun P, Wang S, Li A, Yang H, Li Z, Liu Z, Li J, Shang Z. (2019). Investigation of combustion and emissions of an SI engine with ethanol port injection and gasoline direct injection under lean burn conditions. Energy, 189, 116231. https://doi.org/10.1016/j.energy.2019.116231
  • [4] Zhang J, Nithyanandan K, Li Y, Lee CF, Huang Z. (2015). Comparative study of high-alcohol-content gasoline blends in an SI engine. SAE Technical Paper, 2015-01-0891. https://doi.org/10.4271/2015-01-0891
  • [5] Zhen X, Li X, Wang Y, Liu D, Tian Z. (2020). Comparative study on combustion and emission characteristics of methanol/ hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel, 267, 117193. https://doi.org/10.1016/j.fuel.2020.117193
  • [6] Awad OI, Mamat R, Ali OM, Sidik NAC, Yusaf T, Kadirgama K, Kettner M. (2018). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586-2605. https://doi.org/10.1016/j.rser.2017.09.074
  • [7] Mohammed MK, Balla HH, Al-Dulaimi ZMH, Kareem ZS, Al-Zuhairy MS. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25, 100891. https://doi.org/10.1016/j.csite.2021.100891
  • [8] Wang C, Zeraati-Rezaei S, Xiang L, Xu H. (2017). Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Applied Energy, 191, 603-619. https://doi.org/10.1016/j.apenergy.2017.01.081
  • [9] Yontar AA. (2020). Impact of ethanol, methyl tert-butyl ether and a gasoline–ethanol blend on the performance characteristics and hydrocarbon emissions of an opposed-piston engine, Biofuels, 11 (2), 141-153. https://doi.org/10.1080/17597269.2019.1661146
  • [10] Yücesu HS, Topgül T, Çinar C, Okur M. (2006). Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering, 26, 2272-2278. https://doi.org/10.1016/j.applthermaleng.2006.03.006
  • [11] Al-Hasan M. (2003). Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management, 44 (9), 1547-1561. https://doi.org/10.1016/S0196-8904(02)00166-8
  • [12] Hsieh WD, Chen RH, Wu TL, Lin TH. (2002). Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmospheric Environment, 36, 403-410. https://doi.org/10.1016/S1352-2310(01)00508-8
  • [13] Hussain SKA, Usman M, Umer J, Farooq M, Noor F, Anjum R. (2022). A novel analysis of n-butanol–gasoline blends impact on spark ignition engine characteristics and lubricant oil degradation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Advance online publication. https://doi.org/10.1080/15567036.2022.2036874
  • [14] Jia LW, Shen MQ, Wang J, Lin MQ. (2005). Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials, 123 (1-3), 29-34. https://doi.org/10.1016/j.jhazmat.2005.03.046
  • [15] Rajendran S, Govindasamy M. (2022). Effect of isopropyl alcohol on the performance, combustion and emission characteristics variable compression ratio engine using rubber seed oil blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Advance online publication. https://doi.org/10.1080/15567036.2021.1887408
  • [16] Shirazi SA, Abdollahipoor B, Windom B, Reardon KF, Foust TD. (2020). Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Processing Technology, 197, 106194. https://doi.org/10.1016/j.fuproc.2019.106194
  • [17] Topgül T. (2015). The effects of MTBE blends on engine performance and exhaust emissions in a spark ignition engine. Fuel Processing Technology, 138, 483–489. https://doi.org/10.1016/j.fuproc.2015.06.024
  • [18] Topgül T, Cinar C, Ozdemir AO. (2021). The variations of the exhaust emissions at low ambient temperature for E10 and M10 fueled SI engine. Journal of Thermal Science and Technology, 41 (2), 227-237. https://doi.org/10.47480/isibted.1025931
  • [19] Singh PK, Ramadhas AS, Mathai R, Sehgal AK. (2016). Investigation on combustion, performance and emissions of automotive engine fueled with ethanol blended gasoline. SAE Int. J. Fuels Lubr., 9 (1), 215-223. https://doi.org/10.4271/2016-01-0886
  • [20] Hasan AO, Al-Rawashdeh H, Al-Muhtaseb AH, Abu-jrai A, Ahmad R, Zeaiter J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231, 197-203. https://doi.org/10.1016/j.fuel.2018.05.045
  • [21] Farrell JT, Johnston RJ, Androulakis IP. (2004). Molecular structure effects on laminar burning velocities at elevated temperature and pressure. SAE Technical Paper, 2004-01-2936. https://doi.org/10.4271/2004-01-2936 [22] Tian G, Daniel R, Li H, Xu H, Shuai S, Richards P. (2010). Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline. Energy&Fuels, 24, 3898–3905. https://doi.org/10.1021/ef100452c
  • [23] Topgül T, Yücesu HS. (2006). Etanol benzin karışımı kullanılan bir motorda sıkıştırma oranı ve ateşleme zamanının motor momentane etkisi. 3. Ege Enerji Sempozyumu ve Sergisi Bildiriler Kitabı, Muğla, 542-553.
  • [24] Kalghatgi G, Algunaibet I, Morganti K. (2017). On knock intensity and superknock in SI engines. SAE Int. J. Engines, 10 (3), 1051-1063. https://doi.org/10.4271/2017-01-0689
  • [25] Sasaki N, Nakata K. (2012). Effect of fuel components on engine abnormal combustion. SAE Technical Paper, 2012-01-1276. https://doi.org/10.4271/2012-01-1276
  • [26] How HG, Masjuki HH, Kalam MA, Teoh YH. (2014). An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine. Energy, 69, 749-759. https://doi.org/10.1016/j.energy.2014.03.070
  • [27] Kakoee A, Bakhshan Y, Aval SM, Gharehghani A. (2018). An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen. Energy Conversion and Management, 166, 489-499. https://doi.org/10.1016/j.enconman.2018.04.063
  • [28] Akcay M, Yilmaz IT, Feyzioglu A. (2021). The influence of hydrogen addition on the combustion characteristics of a common-rail CI engine fueled with waste cooking oil biodiesel/diesel blends. Fuel Processing Technology, 223, 106999. https://doi.org/10.1016/j.fuproc.2021.106999
  • [29] Gong C, Li Z, Yi L, Huang K, Liu F. (2020). Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel, 260, 116403. https://doi.org/10.1016/j.fuel.2019.116403
  • [30] Huang Y, He X, Zhang H, Wei J, Sng DWM. (2021). Spark ignition and stability limits of spray kerosene flames under subatmospheric pressure conditions. Aerospace Science and Technology, 114, 106734. https://doi.org/10.1016/j.ast.2021.106734
  • [31] İlhak Mİ, Doğan R, Akansu SO, Kahraman N. (2020). Experimental study on an SI engine fueled by gasoline, ethanol and acetylene at partial loads. Fuel, 261, 116148. https://doi.org/10.1016/j.fuel.2019.116148
  • [32] Holman JP. (1989). Experimental Methods for Engineers. McGraw-Hill, Inc.
  • [33] Nour M, Kosaka H, Bady M, Sato S, Abdel-Rahman AK. (2017). Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold. Fuel Processing Technology, 164, 33-50. https://doi.org/10.1016/j.fuproc.2017.04.018
  • [34] Rocha DD, Radicchi FC, Lopes GS, Brunocilla MF, Gomes PCF, Santos NDSA, Malaquias ACT, Filho FAR, Baêta JGC. (2021). Study of the water injection control parameters on combustion performance of a spark-ignition engine. Energy, 217, 119346. https://doi.org/10.1016/j.energy.2020.119346
  • [35] Heywood JB. (1988). Internal Combustion Engine Fundamentals. New York: McGraw-Hill, Inc.
  • [36] Hochgreb S. (1998). Combustion-related emissions in SI engines. In: Handbook of Air Pollution from Internal Combustion Engines Pollutant Formation and Control, ed. E. Sher, Boston: Academic Press, 118-170.
  • [37] Abdel-Rahman AA. (1998). On the emissions from internal-combustion engines: A review. International Journal of Energy Research, 22, 483-513. https://doi.org/10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-Z
  • [38] Schäfer F, Basshuysen RV. (1995). Reduced Emissions and Fuel Consumption in Automotive Engines. Wien: Springer-Verlag.
  • [39] Mondt JR. (2000). Cleaner cars: The History and Technology of Emission Control since the 1960s. Warrendale: Society of Automotive Engineers, Inc.
  • [40] Alasfour FN. (1998). NOx emission from a spark ignition engine using 30% iso-butanol-gasoline blend: Part 1-Preheating inlet air. Applied Thermal Engineering, 18, 245-256. https://doi.org/10.1016/S1359-4311(97)00081-1
  • [41] Lavoie GA, Heywood JB, Keck JC. (1970). Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol., 1, 313-326.
  • [42] Alasfour FN. (1998). NOx emission from a spark ignition engine using 30% iso-butanol-gasoline blend: Part 2-Ignition timing. Applied Thermal Engineering, 18 (8), 609-618. https://doi.org/10.1016/S1359-4311(97)00082-3
  • [43] Nakata K, Utsumi S, Ota A, Kawatake K, Kawai T, Tsunooka T. (2006). The effect of ethanol fuel on a spark ignition engine. SAE Technical Paper, 2006-01-3380. https://doi.org/10.4271/2006-01-3380
  • [44] Kumar S, Ramadhas AS, Kumar P, Sithananthan M, Maheshwari M, Kagdiyal V. (2021). Fuel economy and emissions of E85 in passenger cars - A move towards flex fuel vehicle. SAE Int. J. Adv. & Curr. Prac. in Mobility, 3 (3), 1337-1343. https://doi.org/10.4271/2021-28-0009
  • [45] Park C, Choi Y, Kim C, Oh S, Lim G, Moriyoshi Y. (2010). Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas. Fuel, 89, 2118-2125. https://doi.org/10.1016/j.fuel.2010.03.018
  • [46] Tang Q, Duan X, Liu Y, Li S, Zhao Z, Ren K, Li Y, Chang H. (2020). Experimental study the effects of acetone–butanol–ethanol (ABE), spark timing and lambda on the performance and emissions characteristics of a high-speed SI engine. Fuel, 279, 118499. https://doi.org/10.1016/j.fuel.2020.118499
  • [47] Rakopoulos CD, Antonopoulos KA, Rakopoulos DC. (2007). Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blend. Energy, 32, 1791-1808. https://doi.org/10.1016/j.energy.2007.03.005
  • [48] Morsy MH. (2015). Assessment of a direct injection diesel engine fumigated with ethanol/water mixtures. Energy Conversion and Management, 94, 406-414. https://doi.org/10.1016/j.enconman.2015.01.086
  • [49] Şahin Z, Durgun O, Kurt M. (2015). Experimental investigation of improving diesel combustion and engine performance by ethanol fumigation-heat release and flammability analysis. Energy Conversion and Management, 89, 175-187. https://doi.org/10.1016/j.enconman.2014.09.053
  • [50] Hasan AO, Osman AI, Al-Muhtaseb AH, Al-Rawashdeh H, Abu-jrai A, Ahmad R, Gomaa MR, Deka TJ, Rooney DW. (2021). An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Processing Technology, 220, 106901. https://doi.org/10.1016/j.fuproc.2021.106901
  • [51] Zhao W, Yan J, Gao S, Lee TH, Li X. (2022). The combustion and emission characteristics of a common-rail diesel engine fueled with diesel, propanol, and pentanol blends under low intake pressures. Fuel, 307, 121692. https://doi.org/10.1016/j.fuel.2021.121692
  • [52] Masum BM, Kalam MA, Masjuki HH, Palash SM, Fattah IMR. (2014). Performance and emission analysis of a multi cylinder gasoline engine operating at different alcohol–gasoline blends. RSC Advances, 4, 27898-27904. https://doi.org/10.1039/C4RA04580G
  • [53] Zhao H, Ge Y, Hao C, Han X, Fu M, Yu L, Shah AN. (2010). Carbonyl compound emissions from passenger cars fueled with methanol/gasoline blends. Science of the Total Environment, 408, 3607-3613. https://doi.org/10.1016/j.scitotenv.2010.03.046
  • [54] Renzi M, Bietresato M, Mazzetto F. (2016). An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends. Energy, 115, 1069-1080. https://doi.org/10.1016/j.energy.2016.09.050
  • [55] Masum BM, Masjuki HH, Kalam MA, Palash SM, Habibullah M. (2015). Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine. Journal of Cleaner Production, 86, 230-237. https://doi.org/10.1016/j.jclepro.2014.08.032
  • [56] Agarwal AK, Karare H, Dhar A. (2014). Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Processing Technology, 121, 16-24. https://doi.org/10.1016/j.fuproc.2013.12.014
  • [57] Erkoca MC. (2010). Alternatif Yakıt Olarak Etanol Kullanılan Buji ile Ateşlemeli Bir Motorda Vuruntu Sınırının Deneysel Olarak Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [58] Turner JWG, Pearson RJ, Holland B, Peck R. (2007). Alcohol-based fuels in high performance engines. SAE Technical Paper, 2007-01-0056. https://doi.org/10.4271/2007-01-0056
  • [59] Wicker RB, Hutchison PA, Acosta OA, Matthews RD. (1999). Practical Considerations for an E85-fueled vehicle conversion. SAE Technical Paper, 1999-01-3517. https://doi.org/10.4271/1999-01-3517
  • [60] Davis GW, Heil ET. (2000). The development and performance of a high blend ethanol fueled vehicle. SAE Technical Paper, 2000-01-1602. https://doi.org/10.4271/2000-01-1602
  • [61] Boyle J, Chamberlain B, Henrich C, Howe T, Johnson J, Jones B, Martinez E, Mathison S, Ready K, Straumann D, Winkelman J. (2000). E85 1999 Chevrolet Silverado: A conversion by Minnesota State University, Mankato for the “1999 ethanol vehicle challenge”. SAE Technical Paper, 2000-01-0591. https://doi.org/10.4271/2000-01-0591
  • [62] Ağbulut Ü, Sarıdemir S, Albayrak S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 389. https://doi.org/10.1007/s40430-019-1891-8
  • [63] Guillin-Estrada W, Maestre-Cambronel D, Bula-Silvera A, Gonzalez-Quiroga A, Duarte-Forero J. (2021). Combustion and performance evaluation of a spark ignition engine operating with acetone–butanol–ethanol and hydroxyl. Applied Sciences, 11, 5282. https://doi.org/10.3390/app11115282
  • [64] Karagöz Y, Balcı Ö, Köten H. (2019). Investigation of hydrogen usage on combustion characteristics and emissions of a spark ignition engine, International Journal of Hydrogen Energy, 44, 14243-14256. https://doi.org/10.1016/j.ijhydene.2019.01.147
  • [65] Pilusa TJ, Mollagee MM, Muzenda E. (2012). Reduction of vehicle exhaust emissions from diesel engines using the whale concept filter, Aerosol and Air Quality Research, 12, 994–1006. https://doi.org/10.4209/aaqr.2012.04.0100

Experimental Investigation of the Effects of E85 and Gasoline on NO Emission in a Spark Ignition Engine

Yıl 2023, , 1283 - 1295, 28.12.2023
https://doi.org/10.29109/gujsc.1333519

Öz

Energy need is one of the indispensable needs of human beings. At this point, the important thing is to use the available resource that is sustainable, economical, and sensitive to the ecosystem. For this reason, alternative fuels will maintain their importance in the future as they do today. Internal combustion engines continue to be used as power plants for conventional and hybrid vehicles. The sustainability of internal combustion engines depends on their energy consumption and the emissions released. In this study, the effects of E85 and gasoline on NO emissions have been investigated experimentally by considering ignition timing and relative air/fuel ratio in a spark ignition engine. The experiments have been performed on the Ricardo Hydra research engine at 2000 rpm engine speed and a 10:1 compression ratio. The experimental results show that engine output power obtained using E85 was similar to or higher than that of E0. The exhaust gas temperatures for E85 decreased by an average of 22.6 °C, compared to E0. When all experimental data obtained with E0 and E85 were compared with each other, it was seen that gravimetric fuel consumption and brake specific fuel consumption were increased on average by 39.3% and 37.5%, respectively. The results of this study show that especially the improvement of E85 in NO emission is remarkable. Considering the maximum NO point at 1.05 or 1.1 relative air/fuel ratio, a 38.4% reduction in brake specific NO was obtained with E85.

Kaynakça

  • [1] Bechtold RL. (1997). Alternative Fuels Guidebook. Warrendale: Society of Automotive Engineers, Inc.
  • [2] Turner D, Xu H, Cracknell RF, Natarajan V, Chen X. (2011). Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel, 90, 1999-2006. https://doi.org/10.1016/j.fuel.2010.12.025
  • [3] Yu X, Guo Z, Sun P, Wang S, Li A, Yang H, Li Z, Liu Z, Li J, Shang Z. (2019). Investigation of combustion and emissions of an SI engine with ethanol port injection and gasoline direct injection under lean burn conditions. Energy, 189, 116231. https://doi.org/10.1016/j.energy.2019.116231
  • [4] Zhang J, Nithyanandan K, Li Y, Lee CF, Huang Z. (2015). Comparative study of high-alcohol-content gasoline blends in an SI engine. SAE Technical Paper, 2015-01-0891. https://doi.org/10.4271/2015-01-0891
  • [5] Zhen X, Li X, Wang Y, Liu D, Tian Z. (2020). Comparative study on combustion and emission characteristics of methanol/ hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel, 267, 117193. https://doi.org/10.1016/j.fuel.2020.117193
  • [6] Awad OI, Mamat R, Ali OM, Sidik NAC, Yusaf T, Kadirgama K, Kettner M. (2018). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 82, 2586-2605. https://doi.org/10.1016/j.rser.2017.09.074
  • [7] Mohammed MK, Balla HH, Al-Dulaimi ZMH, Kareem ZS, Al-Zuhairy MS. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25, 100891. https://doi.org/10.1016/j.csite.2021.100891
  • [8] Wang C, Zeraati-Rezaei S, Xiang L, Xu H. (2017). Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Applied Energy, 191, 603-619. https://doi.org/10.1016/j.apenergy.2017.01.081
  • [9] Yontar AA. (2020). Impact of ethanol, methyl tert-butyl ether and a gasoline–ethanol blend on the performance characteristics and hydrocarbon emissions of an opposed-piston engine, Biofuels, 11 (2), 141-153. https://doi.org/10.1080/17597269.2019.1661146
  • [10] Yücesu HS, Topgül T, Çinar C, Okur M. (2006). Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering, 26, 2272-2278. https://doi.org/10.1016/j.applthermaleng.2006.03.006
  • [11] Al-Hasan M. (2003). Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management, 44 (9), 1547-1561. https://doi.org/10.1016/S0196-8904(02)00166-8
  • [12] Hsieh WD, Chen RH, Wu TL, Lin TH. (2002). Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmospheric Environment, 36, 403-410. https://doi.org/10.1016/S1352-2310(01)00508-8
  • [13] Hussain SKA, Usman M, Umer J, Farooq M, Noor F, Anjum R. (2022). A novel analysis of n-butanol–gasoline blends impact on spark ignition engine characteristics and lubricant oil degradation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Advance online publication. https://doi.org/10.1080/15567036.2022.2036874
  • [14] Jia LW, Shen MQ, Wang J, Lin MQ. (2005). Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials, 123 (1-3), 29-34. https://doi.org/10.1016/j.jhazmat.2005.03.046
  • [15] Rajendran S, Govindasamy M. (2022). Effect of isopropyl alcohol on the performance, combustion and emission characteristics variable compression ratio engine using rubber seed oil blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Advance online publication. https://doi.org/10.1080/15567036.2021.1887408
  • [16] Shirazi SA, Abdollahipoor B, Windom B, Reardon KF, Foust TD. (2020). Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Processing Technology, 197, 106194. https://doi.org/10.1016/j.fuproc.2019.106194
  • [17] Topgül T. (2015). The effects of MTBE blends on engine performance and exhaust emissions in a spark ignition engine. Fuel Processing Technology, 138, 483–489. https://doi.org/10.1016/j.fuproc.2015.06.024
  • [18] Topgül T, Cinar C, Ozdemir AO. (2021). The variations of the exhaust emissions at low ambient temperature for E10 and M10 fueled SI engine. Journal of Thermal Science and Technology, 41 (2), 227-237. https://doi.org/10.47480/isibted.1025931
  • [19] Singh PK, Ramadhas AS, Mathai R, Sehgal AK. (2016). Investigation on combustion, performance and emissions of automotive engine fueled with ethanol blended gasoline. SAE Int. J. Fuels Lubr., 9 (1), 215-223. https://doi.org/10.4271/2016-01-0886
  • [20] Hasan AO, Al-Rawashdeh H, Al-Muhtaseb AH, Abu-jrai A, Ahmad R, Zeaiter J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231, 197-203. https://doi.org/10.1016/j.fuel.2018.05.045
  • [21] Farrell JT, Johnston RJ, Androulakis IP. (2004). Molecular structure effects on laminar burning velocities at elevated temperature and pressure. SAE Technical Paper, 2004-01-2936. https://doi.org/10.4271/2004-01-2936 [22] Tian G, Daniel R, Li H, Xu H, Shuai S, Richards P. (2010). Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline. Energy&Fuels, 24, 3898–3905. https://doi.org/10.1021/ef100452c
  • [23] Topgül T, Yücesu HS. (2006). Etanol benzin karışımı kullanılan bir motorda sıkıştırma oranı ve ateşleme zamanının motor momentane etkisi. 3. Ege Enerji Sempozyumu ve Sergisi Bildiriler Kitabı, Muğla, 542-553.
  • [24] Kalghatgi G, Algunaibet I, Morganti K. (2017). On knock intensity and superknock in SI engines. SAE Int. J. Engines, 10 (3), 1051-1063. https://doi.org/10.4271/2017-01-0689
  • [25] Sasaki N, Nakata K. (2012). Effect of fuel components on engine abnormal combustion. SAE Technical Paper, 2012-01-1276. https://doi.org/10.4271/2012-01-1276
  • [26] How HG, Masjuki HH, Kalam MA, Teoh YH. (2014). An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine. Energy, 69, 749-759. https://doi.org/10.1016/j.energy.2014.03.070
  • [27] Kakoee A, Bakhshan Y, Aval SM, Gharehghani A. (2018). An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen. Energy Conversion and Management, 166, 489-499. https://doi.org/10.1016/j.enconman.2018.04.063
  • [28] Akcay M, Yilmaz IT, Feyzioglu A. (2021). The influence of hydrogen addition on the combustion characteristics of a common-rail CI engine fueled with waste cooking oil biodiesel/diesel blends. Fuel Processing Technology, 223, 106999. https://doi.org/10.1016/j.fuproc.2021.106999
  • [29] Gong C, Li Z, Yi L, Huang K, Liu F. (2020). Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel, 260, 116403. https://doi.org/10.1016/j.fuel.2019.116403
  • [30] Huang Y, He X, Zhang H, Wei J, Sng DWM. (2021). Spark ignition and stability limits of spray kerosene flames under subatmospheric pressure conditions. Aerospace Science and Technology, 114, 106734. https://doi.org/10.1016/j.ast.2021.106734
  • [31] İlhak Mİ, Doğan R, Akansu SO, Kahraman N. (2020). Experimental study on an SI engine fueled by gasoline, ethanol and acetylene at partial loads. Fuel, 261, 116148. https://doi.org/10.1016/j.fuel.2019.116148
  • [32] Holman JP. (1989). Experimental Methods for Engineers. McGraw-Hill, Inc.
  • [33] Nour M, Kosaka H, Bady M, Sato S, Abdel-Rahman AK. (2017). Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold. Fuel Processing Technology, 164, 33-50. https://doi.org/10.1016/j.fuproc.2017.04.018
  • [34] Rocha DD, Radicchi FC, Lopes GS, Brunocilla MF, Gomes PCF, Santos NDSA, Malaquias ACT, Filho FAR, Baêta JGC. (2021). Study of the water injection control parameters on combustion performance of a spark-ignition engine. Energy, 217, 119346. https://doi.org/10.1016/j.energy.2020.119346
  • [35] Heywood JB. (1988). Internal Combustion Engine Fundamentals. New York: McGraw-Hill, Inc.
  • [36] Hochgreb S. (1998). Combustion-related emissions in SI engines. In: Handbook of Air Pollution from Internal Combustion Engines Pollutant Formation and Control, ed. E. Sher, Boston: Academic Press, 118-170.
  • [37] Abdel-Rahman AA. (1998). On the emissions from internal-combustion engines: A review. International Journal of Energy Research, 22, 483-513. https://doi.org/10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-Z
  • [38] Schäfer F, Basshuysen RV. (1995). Reduced Emissions and Fuel Consumption in Automotive Engines. Wien: Springer-Verlag.
  • [39] Mondt JR. (2000). Cleaner cars: The History and Technology of Emission Control since the 1960s. Warrendale: Society of Automotive Engineers, Inc.
  • [40] Alasfour FN. (1998). NOx emission from a spark ignition engine using 30% iso-butanol-gasoline blend: Part 1-Preheating inlet air. Applied Thermal Engineering, 18, 245-256. https://doi.org/10.1016/S1359-4311(97)00081-1
  • [41] Lavoie GA, Heywood JB, Keck JC. (1970). Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol., 1, 313-326.
  • [42] Alasfour FN. (1998). NOx emission from a spark ignition engine using 30% iso-butanol-gasoline blend: Part 2-Ignition timing. Applied Thermal Engineering, 18 (8), 609-618. https://doi.org/10.1016/S1359-4311(97)00082-3
  • [43] Nakata K, Utsumi S, Ota A, Kawatake K, Kawai T, Tsunooka T. (2006). The effect of ethanol fuel on a spark ignition engine. SAE Technical Paper, 2006-01-3380. https://doi.org/10.4271/2006-01-3380
  • [44] Kumar S, Ramadhas AS, Kumar P, Sithananthan M, Maheshwari M, Kagdiyal V. (2021). Fuel economy and emissions of E85 in passenger cars - A move towards flex fuel vehicle. SAE Int. J. Adv. & Curr. Prac. in Mobility, 3 (3), 1337-1343. https://doi.org/10.4271/2021-28-0009
  • [45] Park C, Choi Y, Kim C, Oh S, Lim G, Moriyoshi Y. (2010). Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas. Fuel, 89, 2118-2125. https://doi.org/10.1016/j.fuel.2010.03.018
  • [46] Tang Q, Duan X, Liu Y, Li S, Zhao Z, Ren K, Li Y, Chang H. (2020). Experimental study the effects of acetone–butanol–ethanol (ABE), spark timing and lambda on the performance and emissions characteristics of a high-speed SI engine. Fuel, 279, 118499. https://doi.org/10.1016/j.fuel.2020.118499
  • [47] Rakopoulos CD, Antonopoulos KA, Rakopoulos DC. (2007). Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blend. Energy, 32, 1791-1808. https://doi.org/10.1016/j.energy.2007.03.005
  • [48] Morsy MH. (2015). Assessment of a direct injection diesel engine fumigated with ethanol/water mixtures. Energy Conversion and Management, 94, 406-414. https://doi.org/10.1016/j.enconman.2015.01.086
  • [49] Şahin Z, Durgun O, Kurt M. (2015). Experimental investigation of improving diesel combustion and engine performance by ethanol fumigation-heat release and flammability analysis. Energy Conversion and Management, 89, 175-187. https://doi.org/10.1016/j.enconman.2014.09.053
  • [50] Hasan AO, Osman AI, Al-Muhtaseb AH, Al-Rawashdeh H, Abu-jrai A, Ahmad R, Gomaa MR, Deka TJ, Rooney DW. (2021). An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Processing Technology, 220, 106901. https://doi.org/10.1016/j.fuproc.2021.106901
  • [51] Zhao W, Yan J, Gao S, Lee TH, Li X. (2022). The combustion and emission characteristics of a common-rail diesel engine fueled with diesel, propanol, and pentanol blends under low intake pressures. Fuel, 307, 121692. https://doi.org/10.1016/j.fuel.2021.121692
  • [52] Masum BM, Kalam MA, Masjuki HH, Palash SM, Fattah IMR. (2014). Performance and emission analysis of a multi cylinder gasoline engine operating at different alcohol–gasoline blends. RSC Advances, 4, 27898-27904. https://doi.org/10.1039/C4RA04580G
  • [53] Zhao H, Ge Y, Hao C, Han X, Fu M, Yu L, Shah AN. (2010). Carbonyl compound emissions from passenger cars fueled with methanol/gasoline blends. Science of the Total Environment, 408, 3607-3613. https://doi.org/10.1016/j.scitotenv.2010.03.046
  • [54] Renzi M, Bietresato M, Mazzetto F. (2016). An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends. Energy, 115, 1069-1080. https://doi.org/10.1016/j.energy.2016.09.050
  • [55] Masum BM, Masjuki HH, Kalam MA, Palash SM, Habibullah M. (2015). Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine. Journal of Cleaner Production, 86, 230-237. https://doi.org/10.1016/j.jclepro.2014.08.032
  • [56] Agarwal AK, Karare H, Dhar A. (2014). Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Processing Technology, 121, 16-24. https://doi.org/10.1016/j.fuproc.2013.12.014
  • [57] Erkoca MC. (2010). Alternatif Yakıt Olarak Etanol Kullanılan Buji ile Ateşlemeli Bir Motorda Vuruntu Sınırının Deneysel Olarak Belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [58] Turner JWG, Pearson RJ, Holland B, Peck R. (2007). Alcohol-based fuels in high performance engines. SAE Technical Paper, 2007-01-0056. https://doi.org/10.4271/2007-01-0056
  • [59] Wicker RB, Hutchison PA, Acosta OA, Matthews RD. (1999). Practical Considerations for an E85-fueled vehicle conversion. SAE Technical Paper, 1999-01-3517. https://doi.org/10.4271/1999-01-3517
  • [60] Davis GW, Heil ET. (2000). The development and performance of a high blend ethanol fueled vehicle. SAE Technical Paper, 2000-01-1602. https://doi.org/10.4271/2000-01-1602
  • [61] Boyle J, Chamberlain B, Henrich C, Howe T, Johnson J, Jones B, Martinez E, Mathison S, Ready K, Straumann D, Winkelman J. (2000). E85 1999 Chevrolet Silverado: A conversion by Minnesota State University, Mankato for the “1999 ethanol vehicle challenge”. SAE Technical Paper, 2000-01-0591. https://doi.org/10.4271/2000-01-0591
  • [62] Ağbulut Ü, Sarıdemir S, Albayrak S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 389. https://doi.org/10.1007/s40430-019-1891-8
  • [63] Guillin-Estrada W, Maestre-Cambronel D, Bula-Silvera A, Gonzalez-Quiroga A, Duarte-Forero J. (2021). Combustion and performance evaluation of a spark ignition engine operating with acetone–butanol–ethanol and hydroxyl. Applied Sciences, 11, 5282. https://doi.org/10.3390/app11115282
  • [64] Karagöz Y, Balcı Ö, Köten H. (2019). Investigation of hydrogen usage on combustion characteristics and emissions of a spark ignition engine, International Journal of Hydrogen Energy, 44, 14243-14256. https://doi.org/10.1016/j.ijhydene.2019.01.147
  • [65] Pilusa TJ, Mollagee MM, Muzenda E. (2012). Reduction of vehicle exhaust emissions from diesel engines using the whale concept filter, Aerosol and Air Quality Research, 12, 994–1006. https://doi.org/10.4209/aaqr.2012.04.0100
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İçten Yanmalı Motorlar
Bölüm Tasarım ve Teknoloji
Yazarlar

Mustafa Ceyhun Erkoca 0000-0003-3571-1606

Tolga Topgül 0000-0003-1347-9594

Erken Görünüm Tarihi 23 Ekim 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 27 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Erkoca, M. C., & Topgül, T. (2023). Experimental Investigation of the Effects of E85 and Gasoline on NO Emission in a Spark Ignition Engine. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(4), 1283-1295. https://doi.org/10.29109/gujsc.1333519

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526