Araştırma Makalesi
BibTex RIS Kaynak Göster

Silindirik Düz ve Küresel Uçlu Takımlarla Parmak Frezeleme Operasyonlarında Kesme Kuvvetlerinin Tahmini İçin Mekanistik Modelleme

Yıl 2024, , 662 - 674, 30.09.2024
https://doi.org/10.29109/gujsc.1443579

Öz

Frezeleme kuvvetleri, işleme sürecinde takım ömrünü, boyut doğruluğunu, yüzey topografyasını ve kesme sıcaklığını etkilemektedir. Ayrıca, kesici takımların ve takım tezgahlarının tasarımı için frezeleme kuvvetlerinin tahmin edilmesi çok önemlidir. Frezeleme kuvvetlerinin tahmini için genellikle mekanistik yaklaşım kullanılmaktadır. Bu çalışmada, parmak frezeleme operasyonlarında kesme kuvvetlerini tahmin etmek için mekanistik model sunulmuştur. Parmak frezeleme operasyonu silindirik düz ve küresel uçlu iki farklı kesici takım için ele alınmıştır. Kesme hızı 100 m/dak’da sabit tutularak farklı ilerleme hızlarında (0,06 ve 0,09 mm/diş) ve takım talaş açılarında (6 ve 10) AISI 1045 çeliği üzerinde bir dizi analiz gerçekleştirilmiştir. Mekanistik modelin etkinliği, silindirik düz uçlu takımla frezeleme sırasında deneysel olarak elde edilen kuvvetlerle tahminlerin karşılaştırılması ile ortaya konmuştur. Mekanistik model ilerleme kuvvetini %3,64’lük ortalama hatayla tahmin ederken, normal kuvvet için %6,09’luk daha büyük bir tahmin hatası gözlemlenmiştir. Kesme kuvveti modelinin doğrulanmasına ek olarak, küresel uçlu takımla frezeleme işlemi sırasında ilerleme hızı ve kesici takım talaş açısının kesme kuvvetleri üzerindeki etkilerini incelemek amacıyla bir simülasyon çalışması yürütülmüştür. 6 pozitif talaş açısına sahip takım kullanılarak yapılan simülasyonlarda ilerleme hızının 0,06 mm/diş’ten 0,09 mm/diş’e artırılması ilerleme ve normal kuvvet genliklerinin yaklaşık %30 artmasına neden olmuştur. 0,06 mm/diş ilerleme hızında takım talaş açısı 6’den 10’ye değiştirildiğinde kesme kuvvetlerindeki artış %45 civarındadır. Sonuç olarak, enerji tüketimini azaltmak için takım talaş açısı 6 olarak ayarlanmalıdır.

Kaynakça

  • [1] Yağmur, S., Kurt, A. ve Şeker, U. (2018). Karbon fiber takviyeli kompozit malzemelerinin frezelenmesinde meydana gelen yüzey pürüzlüğünün değerlendirilmesi ve matematiksel modellenmesi. Gazi University Journal of Science Part C: Design and Technology, 6(3), 705–714.
  • [2] Engin, S. and Altintas, Y. (2001). Mechanics and dynamics of general milling cutters. Part I: helical end mills. International Journal of Machine Tools & Manufacture, 41, 2195–2212.
  • [3] Gradišek, J., Kalveram, M. and Weinert, K. (2004). Mechanistic identification of specific force coefficients for a general end mill. International Journal of Machine Tools & Manufacture, 44, 401–414.
  • [4] Ehman, K.F., Kapoor, S.G., DeVor, R.E. and Lazoglu, I. (1997). Machining process modeling: A review. Journal of Manufacturing Science and Engineering, 119, 655–663.
  • [5] Van Luttervelt, C.A., Childs, T.H.C., Jawahir, I.S., Klocke, F. and Venuvinod, P.K. (1998). Present situation and future trends in modeling of machining operations. Annals of the CIRP, 47, 587–626.
  • [6] Merchant, M.E. (1945). Mechanics of the metal cutting process I. Orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16, 267–275.
  • [7] Armarego, E.J.A. and Brown, R.H. (1969). The machining of metals. New Jersey: Prentice-Hall.
  • [8] Koenigsberger, F. and Sabberwal, A.J.P. (1961). An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design & Research, 1, 15–33.
  • [9] Young, H., Mathew, P. and Oxley, P.L.B. (1994). Predicting cutting forces in face milling. International Journal of Machine Tools & Manufacture, 34(6), 771–83.
  • [10] Oxley, P.L.B. (1989). Mechanics of machining. Chichester: Ellis Horwood Limited.
  • [11] Aydın, M. (2024). Ti6Al4V alaşımının ortogonal tornalanmasında ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkilerinin sonlu elemanlar analizi. Gazi University Journal of Science Part C: Design and Technology, 12(2), 567–576.
  • [12] Aydın, M. (2022). Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme. Politeknik Dergisi, 25(2), 813–826.
  • [13] Sabberwal, A.J.P. (1961). Chip section and cutting force during milling operation. Annals of the CIRP, 10(1), 197–203.
  • [14] Aydın, M. (2022). Parmak frezeleme sırasında takım salgısının etkisi dahil edilerek kesme kuvvetlerinin tahmini ve analizi. Politeknik Dergisi, 25(1), 157–167.
  • [15] Bayram, B.S. ve Korkut, İ. (2022). Parmak frezelerde kesme kuvvetlerinin modellenmesi. Gazi University Journal of Science Part C: Design and Technology, 10(4), 964–977.
  • [16] Aydın, M. and Köklü, U. (2024). Analysis of cutting forces at different spindle speeds with straight and helical-flute tools for conventional-speed milling incorporating the effect of tool runout. Mechanics Based Design of Structures and Machines, 52(2), 867–893.
  • [17] Koch, K.F., Lilly, B., Kropp, E. and Altan, T. (1990). Development of a CAE-module for calculating cutting forces in 3-axis milling of sculptured surfaces in die manufacturing, National Science Foundation ERC report ERC/NSM-D-90-43, The Ohio State University.
  • [18] Feng, H.Y. and Menq, C.H. (1994). The prediction of cutting forces in the ball-end milling process II, cut geometry analysis and model verification. International Journal of Machine Tools & Manufacture, 34, 711–719. [19] Altintas, Y. and Lee, P. (1996). General mechanics and dynamics model for helical end mills. Annals of the CIRP, 45(1), 59–64.
  • [20] Aydın, M. and Köklü, U. (2017). Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92, 1465–1480.
  • [21] Srinivasa, Y.V. and Shunmugam, M.S. (2013). Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. International Journal of Machine Tools & Manufacture, 67, 18–27.
  • [22] Wan, M., Zhang, W.H., Qin, G.H. and Tan, G. (2007). Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. International Journal of Machine Tools & Manufacture, 47, 1767–1776.
  • [23] Wan, M., Zhang, W.H., Tan, G. and Qin, G.H. (2007). New cutting force modeling approach for flat end mill. Chinese Journal of Aeronautics, 20, 282–288.
  • [24] Aydın, M., Uçar, M., Cengiz, A., Kurt, M. and Barkın, B. (2014). A methodology for cutting force prediction in side milling. Materials and Manufacturing Processes, 29, 1429–1435.
  • [25] Aydın, M., Uçar, M. Cengiz, A. and Kurt, M. (2015). Identification of static surface form errors from cutting force distribution in flat-end milling processes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1001–1013.
  • [26] Aydın, M. and Köklü, U. (2020). Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simulation Modelling Practice and Theory, 100, 102039.
  • [27] Gonzalo, O., Jauregi, H., Uriarte, L.G. and López de Lacalle, L.N. (2009). Prediction of specific force coefficients from a FEM cutting model. The International Journal of Advanced Manufacturing Technology, 43, 348–356.
  • [28] Zhang, C., Li, C., Xu, M., Yao, G., Liu, Z. and Dai, W. (2022). Cutting force and nonlinear chatter stability of ball‑end milling cutter. The International Journal of Advanced Manufacturing Technology, 120, 5885–5908.
  • [29] Altintas, Y. and Lee, P. (1998). Mechanics and dynamics of ball end milling forces. Journal of Manufacturing Science and Engineering, 120, 684–692.
  • [30] Budak, E., Altintas, Y. and Armarego, E.J.A. (1996). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118, 216–224.
  • [31] Altintas, Y. (2000). Manufacturing automation: Metal cutting mechanics machine tool vibrations and CNC design. United Kingdom: Cambridge University Press.
  • [32] Gonzalo, O., Beristain, J., Jauregi, H. and Sanz, C. (2010). A method for the identification of the specific force coefficients for mechanistic milling simulation. International Journal of Machine Tools & Manufacture, 50, 765–774.

Mechanistic Modeling for Predicting Cutting Forces in End-milling Operations with Cylindrical Flat-End and Ball-End Milling Cutters

Yıl 2024, , 662 - 674, 30.09.2024
https://doi.org/10.29109/gujsc.1443579

Öz

Milling forces affect tool life, dimensional accuracy, surface topography and cutting temperature in the machining process. Further, the prediction of milling forces is very important for designing cutting tools and machine tools. The mechanistic approach is commonly employed for the prediction of milling forces. In this study, a mechanistic model was presented to predict the cutting forces in end milling operations. The end milling operation was considered for two different cutting tools, namely cylindrical flat and ball-end milling cutters. A number of analyses were performed on AISI 1045 steel at different feed rates (0,06 and 0,09 mm/tooth) and tool rake angles (6 and 10) by keeping the cutting speed constant at 100 m/min. The effectiveness of the mechanistic model was demonstrated by comparing the predictions with experimentally obtained forces during cylindrical flat-end milling. While the mechanistic model predicted the feed force with an average error of 3,64%, a larger prediction error of 6,09% was observed for the normal force. In addition to verification of the cutting force model, a simulation study was conducted to examine the influences of feed rate and cutting tool rake angle on cutting forces during ball-end milling operation. In simulations performed using a tool with a positive rake angle of 6, increasing the feed rate from 0,06 to 0,09 mm/tooth caused the feed and normal force amplitudes to increase by approximately 30%. When the tool rake angle was changed from 6 to 10 at feed rate of 0,06 mm/tooth, the increase in cutting forces was around 45%. Consequently, the tool rake angle should be adjusted at 6 to reduce energy consumption.

Kaynakça

  • [1] Yağmur, S., Kurt, A. ve Şeker, U. (2018). Karbon fiber takviyeli kompozit malzemelerinin frezelenmesinde meydana gelen yüzey pürüzlüğünün değerlendirilmesi ve matematiksel modellenmesi. Gazi University Journal of Science Part C: Design and Technology, 6(3), 705–714.
  • [2] Engin, S. and Altintas, Y. (2001). Mechanics and dynamics of general milling cutters. Part I: helical end mills. International Journal of Machine Tools & Manufacture, 41, 2195–2212.
  • [3] Gradišek, J., Kalveram, M. and Weinert, K. (2004). Mechanistic identification of specific force coefficients for a general end mill. International Journal of Machine Tools & Manufacture, 44, 401–414.
  • [4] Ehman, K.F., Kapoor, S.G., DeVor, R.E. and Lazoglu, I. (1997). Machining process modeling: A review. Journal of Manufacturing Science and Engineering, 119, 655–663.
  • [5] Van Luttervelt, C.A., Childs, T.H.C., Jawahir, I.S., Klocke, F. and Venuvinod, P.K. (1998). Present situation and future trends in modeling of machining operations. Annals of the CIRP, 47, 587–626.
  • [6] Merchant, M.E. (1945). Mechanics of the metal cutting process I. Orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16, 267–275.
  • [7] Armarego, E.J.A. and Brown, R.H. (1969). The machining of metals. New Jersey: Prentice-Hall.
  • [8] Koenigsberger, F. and Sabberwal, A.J.P. (1961). An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design & Research, 1, 15–33.
  • [9] Young, H., Mathew, P. and Oxley, P.L.B. (1994). Predicting cutting forces in face milling. International Journal of Machine Tools & Manufacture, 34(6), 771–83.
  • [10] Oxley, P.L.B. (1989). Mechanics of machining. Chichester: Ellis Horwood Limited.
  • [11] Aydın, M. (2024). Ti6Al4V alaşımının ortogonal tornalanmasında ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkilerinin sonlu elemanlar analizi. Gazi University Journal of Science Part C: Design and Technology, 12(2), 567–576.
  • [12] Aydın, M. (2022). Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme. Politeknik Dergisi, 25(2), 813–826.
  • [13] Sabberwal, A.J.P. (1961). Chip section and cutting force during milling operation. Annals of the CIRP, 10(1), 197–203.
  • [14] Aydın, M. (2022). Parmak frezeleme sırasında takım salgısının etkisi dahil edilerek kesme kuvvetlerinin tahmini ve analizi. Politeknik Dergisi, 25(1), 157–167.
  • [15] Bayram, B.S. ve Korkut, İ. (2022). Parmak frezelerde kesme kuvvetlerinin modellenmesi. Gazi University Journal of Science Part C: Design and Technology, 10(4), 964–977.
  • [16] Aydın, M. and Köklü, U. (2024). Analysis of cutting forces at different spindle speeds with straight and helical-flute tools for conventional-speed milling incorporating the effect of tool runout. Mechanics Based Design of Structures and Machines, 52(2), 867–893.
  • [17] Koch, K.F., Lilly, B., Kropp, E. and Altan, T. (1990). Development of a CAE-module for calculating cutting forces in 3-axis milling of sculptured surfaces in die manufacturing, National Science Foundation ERC report ERC/NSM-D-90-43, The Ohio State University.
  • [18] Feng, H.Y. and Menq, C.H. (1994). The prediction of cutting forces in the ball-end milling process II, cut geometry analysis and model verification. International Journal of Machine Tools & Manufacture, 34, 711–719. [19] Altintas, Y. and Lee, P. (1996). General mechanics and dynamics model for helical end mills. Annals of the CIRP, 45(1), 59–64.
  • [20] Aydın, M. and Köklü, U. (2017). Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92, 1465–1480.
  • [21] Srinivasa, Y.V. and Shunmugam, M.S. (2013). Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. International Journal of Machine Tools & Manufacture, 67, 18–27.
  • [22] Wan, M., Zhang, W.H., Qin, G.H. and Tan, G. (2007). Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. International Journal of Machine Tools & Manufacture, 47, 1767–1776.
  • [23] Wan, M., Zhang, W.H., Tan, G. and Qin, G.H. (2007). New cutting force modeling approach for flat end mill. Chinese Journal of Aeronautics, 20, 282–288.
  • [24] Aydın, M., Uçar, M., Cengiz, A., Kurt, M. and Barkın, B. (2014). A methodology for cutting force prediction in side milling. Materials and Manufacturing Processes, 29, 1429–1435.
  • [25] Aydın, M., Uçar, M. Cengiz, A. and Kurt, M. (2015). Identification of static surface form errors from cutting force distribution in flat-end milling processes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1001–1013.
  • [26] Aydın, M. and Köklü, U. (2020). Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simulation Modelling Practice and Theory, 100, 102039.
  • [27] Gonzalo, O., Jauregi, H., Uriarte, L.G. and López de Lacalle, L.N. (2009). Prediction of specific force coefficients from a FEM cutting model. The International Journal of Advanced Manufacturing Technology, 43, 348–356.
  • [28] Zhang, C., Li, C., Xu, M., Yao, G., Liu, Z. and Dai, W. (2022). Cutting force and nonlinear chatter stability of ball‑end milling cutter. The International Journal of Advanced Manufacturing Technology, 120, 5885–5908.
  • [29] Altintas, Y. and Lee, P. (1998). Mechanics and dynamics of ball end milling forces. Journal of Manufacturing Science and Engineering, 120, 684–692.
  • [30] Budak, E., Altintas, Y. and Armarego, E.J.A. (1996). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118, 216–224.
  • [31] Altintas, Y. (2000). Manufacturing automation: Metal cutting mechanics machine tool vibrations and CNC design. United Kingdom: Cambridge University Press.
  • [32] Gonzalo, O., Beristain, J., Jauregi, H. and Sanz, C. (2010). A method for the identification of the specific force coefficients for mechanistic milling simulation. International Journal of Machine Tools & Manufacture, 50, 765–774.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Tasarım ve Teknoloji
Yazarlar

Mehmet Aydın 0000-0003-1126-0601

Erken Görünüm Tarihi 26 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 21 Haziran 2024
Kabul Tarihi 15 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aydın, M. (2024). Silindirik Düz ve Küresel Uçlu Takımlarla Parmak Frezeleme Operasyonlarında Kesme Kuvvetlerinin Tahmini İçin Mekanistik Modelleme. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 662-674. https://doi.org/10.29109/gujsc.1443579

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526