Derleme
BibTex RIS Kaynak Göster

Metal Eklemeli İmalatta Topoloji Optimizasyonu Uygulamaları

Yıl 2024, , 832 - 844, 31.12.2024
https://doi.org/10.29109/gujsc.1542929

Öz

Geleneksel çıkarmalı üretim metodolojilerinin aksine metal malzemelerin direkt olarak 3D-CAD verilerinden alınarak katman katman inşa edilmesi süreci olarak tanımlanan metal eklemeli imalat günden güne yoğun bir talep görerek çalışmalara konu olmaktadır. Bu araştırma çabalarından bazıları fizik, istatistiksel veya yapay zeka odaklı süreç modelleme ve optimizasyonu, yapı-özellik karakterizasyonu, yapısal tasarım optimizasyonu veya maliyetlerin azaltılması ve daha hızlı üretim için ekipman iyileştirmeleriyle ilişkilidir. Özellikle, havacılık gibi, karmaşık geometrili, yüksek ölçü hassasiyetine sahip ve hafif bileşenlerin hızlı bir şekilde üretilmesinin istendiği kritik sektörlerde metal eklemeli imalat ve topoloji optimizasyonu üzerine yapılan çalışmalar giderek yaygınlaşmaktadır. Bu incelemede, metal eklemeli imalatta yapısal tasarım için topoloji optimizasyonunun uzay, havacılık, medikal ve otomotiv sektörlerindeki uygulamalarına odaklanılmıştır.

Kaynakça

  • [1] Aumund-Kopp C., Riou A., EPMA Introduction to Additive Manufacturig, 3rd edition 2019, p.5.
  • [2] Armstrong, M., Mehrabi, H., & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 84, 1001-1029.
  • [3] Bandyopadhyay, A., Zhang, Y., & Bose, S. (2020). Recent developments in metal additive manufacturing. Current opinion in chemical engineering, 28, 96-104.
  • [4] Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 23, 1917-1928.
  • [5] Gibson, I., Rosen, D. W., & Stucker, B. (2014). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer.
  • [6] T. Pan, S. Karnati, and F. Liou, "General Rules for Pre-Process Planning in Powder Bed Fusion System–A Review," in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–an Additive Manufacturing Conference, SFF 2018, pp. 1161–1173, 2020b.
  • [7] A. Bacciaglia, A. Ceruti, and A. Liverani, "Additive Manufacturing Challenges and Future Developments in the Next Ten Years," in Design Tools and Methods in Industrial Engineering, pp. 891–902, 2020. doi: 10.1007/978-3- 030-31154-4_76.
  • [8] Gebisa, A. W., & Lemu, H. G. (2017, December). A case study on topology optimized design for additive manufacturing. In IOP conference series: materials science and engineering (Vol. 276, No. 1, p. 012026). IOP Publishing.
  • [9] https://digi-mode.com.tr/eklemeli-imalat/ Son Erişim Tarihi: 31.07.2024
  • [10] Jihong, Z. H. U., Han, Z. H. O. U., Chuang, W. A. N. G., Lu, Z. H. O. U., Shangqin, Y. U. A. N., & Zhang, W. (2021). A review of topology optimization for additive manufacturing: Status and challenges. Chinese Journal of Aeronautics, 34(1), 91-110.
  • [11] Ibhadode, O., Zhang, Z., Sixt, J., Nsiempba, K. M., Orakwe, J., Martinez-Marchese, A., ... & Toyserkani, E. (2023). Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook. Virtual and Physical Prototyping, 18(1), e2181192.
  • [12] Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., ... & Du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design, 209, 110008.
  • [13] nTop. Cobra Aero Reimagines the Combustion Engine Cylinder using Multiphysics Simulation & Field Driven Design. Erişim adresi https://ntop.com/case-studies/cobra-aero-multiphysics-simulation-drone-engine/
  • [14] Evrensel, R., & Ertek, C. (2023). Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. Journal of the Institute of Science and Technology, 13(3), 2008-2025.
  • [15] Kumar, S., & Jain, P. K. (2018). Additive Manufacturing Processes. CRC Press.
  • [16] Yi, J., Hsu, K. C., Wu, C., & Rosen, D. W. (2019). "A Hybrid Approach to Optimize Material Distributions for Additive Manufacturing". Additive Manufacturing, 30, 100893.
  • [17] Fetisov, K. V., & Maksimov, P. V. (2018, May). Topology optimization and laser additive manufacturing in design process of efficiency lightweight aerospace parts. In Journal of Physics: Conference Series (Vol. 1015, No. 5, p. 052006). IOP Publishing.
  • [18] Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., ... & Mortágua, J. P. (2016). Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Structural Integrity, 1, 289-296.
  • [19] Günaydın, A. C. (2022). Eklemeli imalat prosesinde yapı oryantasyonunun çok-amaçlı optimizasyonu (Doctoral dissertation, Bursa Uludag University (Turkey)).
  • [20] Orme, M., Madera, I., Gschweitl, M., & Ferrari, M. (2018). Topology optimization for additive manufacturing as an enabler for light weight flight hardware. Designs, 2(4), 51.
  • [21] Sleger, G. (2019). Minibike features ground-breaking 3D-printed fuel tank. Erişim adresi https://www.thefabricator.com/additivereport/article/additive/minibike-features-ground-breaking-3d-printed-fuel-tank Theliving. Bionic Partition. Erişim adresi http://www.thelivingnewyork.com/
  • [22] Jaimes, D. D. (2016, January 20). The Living's 3D Printed Airplane Partition is Designed to Mimic Bone Structure. [Archdaily] https://www.archdaily.com/780661/the-livings-parametric-3d-printed-airplane-partition-is-designed-to-mimic-bone-structure
  • [23] Hilpert, E., Hartung, J., Risse, S., Eberhardt, R., & Tünnermann, A. (2018). Precision manufacturing of a lightweight mirror body made by selective laser melting. Precision Engineering, 53, 310-317.
  • [24] López-Castro, J. D., Marchal, A., González, L., & Botana, J. (2017). Topological optimization and manufacturing by Direct Metal Laser Sintering of an aeronautical part in 15-5PH stainless steel. Procedia Manufacturing, 13, 818-824.
  • [25] A. A. Al-Tamimi et al., "Topology Optimised Metallic Bone Plates Produced by Electron Beam Melting: A Mechanical and Biological Study," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1–4, pp. 195–210, 2019. doi: 10.1007/s00170-019-03866-0.
  • [26] Y. He et al., "Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants," in 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. doi: 10.1115/dmd2018-6804.
  • [27] Canlıdinç, M. (2023). Topoloji Optimizasyonu ile Metal Eklemeli İmalat Yönteminin Endüstriyel Uygulamaları. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 9(2), 552-565.
  • [28] T. Iqbal et al., "A General Multi-Objective Topology Optimization Methodology Developed for Customized Design of Pelvic Prostheses," Medical Engineering & Physics, vol. 69, pp. 8–16, 2019. doi: 10.1016/j.medengphy.2019.06.008.
  • [29] Kahraman, F., & Küçük, M. (2020). Otomotiv endüstrisinde topoloji optimizasyonu ile ağırlık azaltma uygulaması üzerine bir araştırma. Avrupa Bilim ve Teknoloji Dergisi, (20), 623-631.
  • [30] E. Dalpadulo, F. Pini, and F. Leali, "Integrated CAD Platform Approach for Design for Additive Manufacturing of High Performance Automotive Components," International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 14, no. 3, pp. 899–909, 2020’a. doi: 10.1007/s12008-020-00684-7.
  • [31] D. Walton and H. Moztarzadeh, "Design and Development of an Additive Manufactured Component by Topology Optimisation," Procedia CIRP, vol. 60, pp. 205–210, 2017. doi: 10.1016/j.procir.2017.03.027.
  • [32] O. Vaverka, D. Koutny, and D. Palousek, "Topologically Optimized Axle Carrier for Formula Student Produced by Selective Laser Melting," Rapid Prototyping Journal, vol. 25, no. 9, pp. 1545–1551, 2019. doi: 10.1108/rpj-07- 2018-0171.
  • [33] E. Tyflopoulos, M. Lien, and M. Steinert, "Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing," Applied Sciences, vol. 11, no. 4, 1437, 2021. doi: 10.3390/app11041437.

Application of Topology Optimization in Metal Additive Manufacturing

Yıl 2024, , 832 - 844, 31.12.2024
https://doi.org/10.29109/gujsc.1542929

Öz

Metal additive manufacturing which is defined as the process of building metal materials layer by layer directly from 3D-CAD data, in contrast to traditional subtractive manufacturing methodologies, is becoming increasingly popular and a subject of intense study. Some of these research efforts are related to physics, statistical or artificial intelligence-based process modeling and optimization, structure-property characterization, structural design optimization or equipment improvements to reduce costs and enable faster production. Particularly in critical sectors such as aerospace, where the rapid production of complex geometry, high precision and lighweight components is desired, studies on metal additive manufacturing and topology optimization are becoming increasingly prevalent. This review focuses on the applications of topology optimization for structural design in metal additive manufacturing in the aerospace, medical and automotive sectors.

Kaynakça

  • [1] Aumund-Kopp C., Riou A., EPMA Introduction to Additive Manufacturig, 3rd edition 2019, p.5.
  • [2] Armstrong, M., Mehrabi, H., & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 84, 1001-1029.
  • [3] Bandyopadhyay, A., Zhang, Y., & Bose, S. (2020). Recent developments in metal additive manufacturing. Current opinion in chemical engineering, 28, 96-104.
  • [4] Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 23, 1917-1928.
  • [5] Gibson, I., Rosen, D. W., & Stucker, B. (2014). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer.
  • [6] T. Pan, S. Karnati, and F. Liou, "General Rules for Pre-Process Planning in Powder Bed Fusion System–A Review," in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–an Additive Manufacturing Conference, SFF 2018, pp. 1161–1173, 2020b.
  • [7] A. Bacciaglia, A. Ceruti, and A. Liverani, "Additive Manufacturing Challenges and Future Developments in the Next Ten Years," in Design Tools and Methods in Industrial Engineering, pp. 891–902, 2020. doi: 10.1007/978-3- 030-31154-4_76.
  • [8] Gebisa, A. W., & Lemu, H. G. (2017, December). A case study on topology optimized design for additive manufacturing. In IOP conference series: materials science and engineering (Vol. 276, No. 1, p. 012026). IOP Publishing.
  • [9] https://digi-mode.com.tr/eklemeli-imalat/ Son Erişim Tarihi: 31.07.2024
  • [10] Jihong, Z. H. U., Han, Z. H. O. U., Chuang, W. A. N. G., Lu, Z. H. O. U., Shangqin, Y. U. A. N., & Zhang, W. (2021). A review of topology optimization for additive manufacturing: Status and challenges. Chinese Journal of Aeronautics, 34(1), 91-110.
  • [11] Ibhadode, O., Zhang, Z., Sixt, J., Nsiempba, K. M., Orakwe, J., Martinez-Marchese, A., ... & Toyserkani, E. (2023). Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook. Virtual and Physical Prototyping, 18(1), e2181192.
  • [12] Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., ... & Du Plessis, A. (2021). Metal additive manufacturing in aerospace: A review. Materials & Design, 209, 110008.
  • [13] nTop. Cobra Aero Reimagines the Combustion Engine Cylinder using Multiphysics Simulation & Field Driven Design. Erişim adresi https://ntop.com/case-studies/cobra-aero-multiphysics-simulation-drone-engine/
  • [14] Evrensel, R., & Ertek, C. (2023). Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu. Journal of the Institute of Science and Technology, 13(3), 2008-2025.
  • [15] Kumar, S., & Jain, P. K. (2018). Additive Manufacturing Processes. CRC Press.
  • [16] Yi, J., Hsu, K. C., Wu, C., & Rosen, D. W. (2019). "A Hybrid Approach to Optimize Material Distributions for Additive Manufacturing". Additive Manufacturing, 30, 100893.
  • [17] Fetisov, K. V., & Maksimov, P. V. (2018, May). Topology optimization and laser additive manufacturing in design process of efficiency lightweight aerospace parts. In Journal of Physics: Conference Series (Vol. 1015, No. 5, p. 052006). IOP Publishing.
  • [18] Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., ... & Mortágua, J. P. (2016). Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Structural Integrity, 1, 289-296.
  • [19] Günaydın, A. C. (2022). Eklemeli imalat prosesinde yapı oryantasyonunun çok-amaçlı optimizasyonu (Doctoral dissertation, Bursa Uludag University (Turkey)).
  • [20] Orme, M., Madera, I., Gschweitl, M., & Ferrari, M. (2018). Topology optimization for additive manufacturing as an enabler for light weight flight hardware. Designs, 2(4), 51.
  • [21] Sleger, G. (2019). Minibike features ground-breaking 3D-printed fuel tank. Erişim adresi https://www.thefabricator.com/additivereport/article/additive/minibike-features-ground-breaking-3d-printed-fuel-tank Theliving. Bionic Partition. Erişim adresi http://www.thelivingnewyork.com/
  • [22] Jaimes, D. D. (2016, January 20). The Living's 3D Printed Airplane Partition is Designed to Mimic Bone Structure. [Archdaily] https://www.archdaily.com/780661/the-livings-parametric-3d-printed-airplane-partition-is-designed-to-mimic-bone-structure
  • [23] Hilpert, E., Hartung, J., Risse, S., Eberhardt, R., & Tünnermann, A. (2018). Precision manufacturing of a lightweight mirror body made by selective laser melting. Precision Engineering, 53, 310-317.
  • [24] López-Castro, J. D., Marchal, A., González, L., & Botana, J. (2017). Topological optimization and manufacturing by Direct Metal Laser Sintering of an aeronautical part in 15-5PH stainless steel. Procedia Manufacturing, 13, 818-824.
  • [25] A. A. Al-Tamimi et al., "Topology Optimised Metallic Bone Plates Produced by Electron Beam Melting: A Mechanical and Biological Study," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1–4, pp. 195–210, 2019. doi: 10.1007/s00170-019-03866-0.
  • [26] Y. He et al., "Solid-Lattice Hip Prosthesis Design: Applying Topology and Lattice Optimization to Reduce Stress Shielding from Hip Implants," in 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. doi: 10.1115/dmd2018-6804.
  • [27] Canlıdinç, M. (2023). Topoloji Optimizasyonu ile Metal Eklemeli İmalat Yönteminin Endüstriyel Uygulamaları. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 9(2), 552-565.
  • [28] T. Iqbal et al., "A General Multi-Objective Topology Optimization Methodology Developed for Customized Design of Pelvic Prostheses," Medical Engineering & Physics, vol. 69, pp. 8–16, 2019. doi: 10.1016/j.medengphy.2019.06.008.
  • [29] Kahraman, F., & Küçük, M. (2020). Otomotiv endüstrisinde topoloji optimizasyonu ile ağırlık azaltma uygulaması üzerine bir araştırma. Avrupa Bilim ve Teknoloji Dergisi, (20), 623-631.
  • [30] E. Dalpadulo, F. Pini, and F. Leali, "Integrated CAD Platform Approach for Design for Additive Manufacturing of High Performance Automotive Components," International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 14, no. 3, pp. 899–909, 2020’a. doi: 10.1007/s12008-020-00684-7.
  • [31] D. Walton and H. Moztarzadeh, "Design and Development of an Additive Manufactured Component by Topology Optimisation," Procedia CIRP, vol. 60, pp. 205–210, 2017. doi: 10.1016/j.procir.2017.03.027.
  • [32] O. Vaverka, D. Koutny, and D. Palousek, "Topologically Optimized Axle Carrier for Formula Student Produced by Selective Laser Melting," Rapid Prototyping Journal, vol. 25, no. 9, pp. 1545–1551, 2019. doi: 10.1108/rpj-07- 2018-0171.
  • [33] E. Tyflopoulos, M. Lien, and M. Steinert, "Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing," Applied Sciences, vol. 11, no. 4, 1437, 2021. doi: 10.3390/app11041437.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İmalat Süreçleri ve Teknolojileri, Katmanlı Üretim
Bölüm Tasarım ve Teknoloji
Yazarlar

Büşra Çalik 0009-0008-9621-2847

Gültekin Uzun 0000-0002-6820-8209

Erken Görünüm Tarihi 21 Kasım 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 23 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çalik, B., & Uzun, G. (2024). Metal Eklemeli İmalatta Topoloji Optimizasyonu Uygulamaları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(4), 832-844. https://doi.org/10.29109/gujsc.1542929

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526