Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Radiation Shielding Properties of Magnesium Oxychloride Cement with Acidic and Basic Pumice Aggregate

Yıl 2025, Cilt: 13 Sayı: 3, 1240 - 1252, 30.09.2025
https://doi.org/10.29109/gujsc.1688022

Öz

New generation cements have been the subject of more research in recent years, especially due to their benefits in terms of carbon emissions. One of the important advantages of new-generation cement production is that it causes a significant reduction in environmental impact. Magnesium oxychloride cement (MOC) is a non-hydraulic binder formed by the chemical reaction of magnesia powder with a MgCl2 solution. It exhibits outstanding mechanical and physical properties such as high early strength, good workability, and low density. In addition, MOC is suitable for use in fire-resistant coatings. In this study, pumice was used as aggregate in concrete produced using magnesium oxychloride cement, and the radiation shielding properties of this concrete were investigated experimentally and using XCOM. Pumice is the preferred lightweight aggregate in lightweight concrete production. In the study, both basic pumice and acidic pumice were used to demonstrate the radiation shielding properties. The comparison between experimental and XCOM data reveals a consistent trend where experimental radiation attenuation values are slightly higher than XCOM predictions, particularly at lower energies, highlighting the importance of careful material selection and the potential of innovative mix designs to improve the performance of concrete.

Kaynakça

  • [1] Jankovský O, Lojka M, Lauermannová AM, Antoncˇík F, Pavlíková M, Pavlík Z, Sedmidubský D, Carbon dioxide uptake by MOC-based materials, Appl. Sci. 2020; 10: 2254.
  • [2] Chen X, Zhang T, Bi W, Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement, Constr. Build. Mater. 2019; 213: 528-536.
  • [3] Jin YJ, Xiao LG, Luo F. Influence of calcium added slag on the strength and water-repellency of magnesium oxychloride cement, Appl. Mech. Mater. 2013; 278-280: 437-439.
  • [4] Huang Q, Zheng W, Xiao X, Dong J, Wen J, Chang C. Effects of fly ash, phosphoric acid, and nano-silica on the properties of magnesium oxychloride cement. Ceramics International. 2021; 47: 34341–34351.
  • [5] Guo Y, Zhang Y, Soe K, Pulham M. Recent development in magnesium oxychloride cement. Structural Concrete. 2018; 19(5): 1290–1300.
  • [6] He P, Poon CS, Tsang DC. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Construction and Building Materials. 2017; 147: 519–524.
  • [7] Madani H, Norouzifar MN, Rostami J. The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Construction and Building Materials. 2018; 174: 356–368.
  • [8] Szabó R, Kristaly F, Nagy S, Singla R, Mucsi G, Kumar S. Reaction, structure and properties of eco-friendly geopolymer cement derived from mechanically activated pumice. Ceramics International. 2023; 49(4): 6756–6763.
  • [9] Deniz V, Umucu Y, Yılmaz İ. Evaluation of Jig Performances in Pumice Enrichment Plant of Industrial Minerals Inc. In: Akar A, Seyrankaya A, editors. 5th Industrial Raw Materials Symposium; 2004; Izmir, Turkey. p. 307–312.
  • [10] Bınıcı H, Durgun MY, Rızaoğlu T, Koluçolak M. Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates. Scientia Iranica. 2012; 19(3): 366–372.
  • [11] Tapan M, Depci T, Özvan A, Efe T, Oyan V. Effect of physical, chemical and electro-kinetic properties of pumice on strength development of pumice blended cements. Materials and Structures. 2013; 46: 1695–1706.
  • [12] Hossain KMA, Properties of volcanic pumice-based cement and lightweight concrete. Cement and Concrete Research, 2004; 34: 2, 283-291.
  • [13] Kilincarslan Ş, Davraz M, Akça M. The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete, Arab. J. Geosci. 2018; 11: 1-6.
  • [14] Kilinçarslan Ş, Davraz M, Akça M. Investigation of the properties of pumice aggregate foam concretes, J. Eng. Sci. 2018; 6 (1): 148-153.
  • [15] Ersoy B, Sariisik A, Dikmen S, Sariisik G. Characterization of acidic pumice and determination of its electrokinetic properties in water, Powder Technol. 2010; 197 (1-2): 129-135.
  • [16] Yücel HE, Öz HÖ, Güneş M. The effects of acidic and basic pumice on physico-mechanical and durability properties of self-compacting concretes, Green Build. Constr. Econ. 2020; 21-36.
  • [17] Öz HÖ. Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate, Constr. Build. Mater. 2018; 166: 601-609.
  • [18] Soleimani A, Mahvi AH, Yaghmaeian K, Abbasnia A, Sharafi K, Alimohammadi M, Zamanzadeh M. Effect of modification by five different acids on pumice stone as natural and low-cost adsorbent for removal of humic acid from aqueous solutions‐Application of response surface methodology. J Mol Liq. 2019; 290: 111181.
  • [19] Çifçi Dİ, Meriç S. A review on pumice for water and wastewater treatment. Desal Water Treat. 2016; 57(39): 18131–18143.
  • [20] Tanyıldızı M, Gökalp İ. Utilization of pumice as aggregate in the concrete: A state of art. Constr Build Mater. 2023; 377: 131102.
  • [21] Gündüz L, Sarıışık A, Tozaçan B, Davraz M, Uğur İ, Çankıran O. Pumice Technology (Pumice Characterization). Isparta; 1998. p. 285.
  • [22] Akkurt I, Akyıldırım H, Mavi B, Kilincarslan S, Basyigit C. Photon attenuation coefficients of concrete includes barite in different rate. Ann Nucl Energy. 2010a; 37(7): 910–914.
  • [23] Akkurt I, Akyıldırım H, Mavi B, Kilincarslan S, Basyigit C. Radiation shielding of concrete containing zeolite. Radiat Meas. 2010b; 45(7): 827–830.
  • [24] Tellili B, Elmahroug Y, Souga C. Investigation on radiation shielding parameters of cerrobend alloys. Nucl Eng Technol. 2017; 49(8): 1758–1771.
  • [25] Alsaab AH, Zeghib S. Analysis of X-ray and gamma ray shielding performance of prepared polymer micro-composites. J Radiat Res Appl Sci. 2023; 16(4): 100708.
  • [26] Gunoglu K, Akkurt I. Radiation shielding properties of concrete containing magnetite. Prog Nucl Energy. 2021; 137: 103776.
  • [27] Matori KA, Sayyed MI, Sidek HAA, Zaid MHM, Singh VP. Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids. 2017; 457: 97–103.
  • [28] Ban CC, Khalaf MA, Ramli M, Ahmed NMA, Ahmad MS, Ali AMA, et al. Modern heavyweight concrete shielding: principles, industrial applications and future challenges; review. J Build Eng. 2021; 39: 102290.
  • [29] Kanagaraj B, Anand N, Andrushia AD, Naser MZ. Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities – a state-of-the-art review. Constr Build Mater. 2023; 404: 133260.
  • [30] Al-Buriahi MS, Alzahrani JS, Alrowaili ZA, Olarinoye IO, Sriwunkum C. Recycling of waste cathode-ray tube glasses as building materials for shielding structures in medical and nuclear facilities. Constr Build Mater. 2023; 376: 131029.
  • [31] Zayed M, El Khayatt AM, Petrounias P, Shahien MG, Mahmoud KA, Rashad AM, et al. From discarded waste to valuable products: barite combination with chrysotile mine waste to produce radiation-shielding concrete. Constr Build Mater. 2024; 417: 135334.
  • [32] Zhang P, Wittmann FH, Zhao T, Lehmann EH, Vontobel P. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl Eng Des. 2011; 241: 4758–4766.
  • [33] Wisnubroto DS, Zamroni H, Sumarbagiono R, Nurliati G. Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nucl Eng Technol. 2021; 53: 549–561.

Asidik ve Bazik Pomza Agregalı Magnezyum Oksiklorür Çimentosunun Radyasyon Zırhlama Özelliklerinin Belirlenmesi

Yıl 2025, Cilt: 13 Sayı: 3, 1240 - 1252, 30.09.2025
https://doi.org/10.29109/gujsc.1688022

Öz

Yeni nesil çimentolar, özellikle karbon emisyonları açısından sağladıkları faydalar nedeniyle son yıllarda daha fazla araştırmanın konusu olmuştur. Yeni nesil çimento üretiminin önemli avantajlarından biri de çevresel etkide önemli bir azalmaya neden olmasıdır. Magnezyum oksiklorür çimentosu (MOC), magnezya tozunun bir MgCl2 çözeltisiyle kimyasal reaksiyonuyla oluşan hidrolik olmayan bir bağlayıcıdır. Yüksek erken dayanım, iyi işlenebilirlik ve düşük yoğunluk gibi olağanüstü mekanik ve fiziksel özellikler göstermektedir. Ayrıca, MOC yangına dayanıklı kaplamalarda kullanılmaya uygundur. Bu çalışmada, magnezyum oksiklorür çimentosu kullanılarak üretilen betonda agrega olarak pomza kullanılmış ve bu betonun radyasyon zırhlama özellikleri deneysel olarak ve XCOM kullanılarak incelenmiştir. Hafif beton üretiminde pomza tercih edilen hafif agregadır. Çalışmada, radyasyon kalkanlama özelliklerini göstermek için bazik pomza ve asidik pomza kullanılmıştır. Deneysel ve XCOM verileri arasındaki karşılaştırma, deneysel radyasyon tutuculuk değerlerinin özellikle düşük enerjilerde XCOM tahminlerinden biraz daha yüksek olduğu tutarlı bir eğilimi ortaya koyarak, dikkatli malzeme seçiminin önemini ve betonun performansını iyileştirmek için yenilikçi karışım tasarımlarının potansiyelini vurgulamaktadır.

Kaynakça

  • [1] Jankovský O, Lojka M, Lauermannová AM, Antoncˇík F, Pavlíková M, Pavlík Z, Sedmidubský D, Carbon dioxide uptake by MOC-based materials, Appl. Sci. 2020; 10: 2254.
  • [2] Chen X, Zhang T, Bi W, Cheeseman C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement, Constr. Build. Mater. 2019; 213: 528-536.
  • [3] Jin YJ, Xiao LG, Luo F. Influence of calcium added slag on the strength and water-repellency of magnesium oxychloride cement, Appl. Mech. Mater. 2013; 278-280: 437-439.
  • [4] Huang Q, Zheng W, Xiao X, Dong J, Wen J, Chang C. Effects of fly ash, phosphoric acid, and nano-silica on the properties of magnesium oxychloride cement. Ceramics International. 2021; 47: 34341–34351.
  • [5] Guo Y, Zhang Y, Soe K, Pulham M. Recent development in magnesium oxychloride cement. Structural Concrete. 2018; 19(5): 1290–1300.
  • [6] He P, Poon CS, Tsang DC. Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Construction and Building Materials. 2017; 147: 519–524.
  • [7] Madani H, Norouzifar MN, Rostami J. The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Construction and Building Materials. 2018; 174: 356–368.
  • [8] Szabó R, Kristaly F, Nagy S, Singla R, Mucsi G, Kumar S. Reaction, structure and properties of eco-friendly geopolymer cement derived from mechanically activated pumice. Ceramics International. 2023; 49(4): 6756–6763.
  • [9] Deniz V, Umucu Y, Yılmaz İ. Evaluation of Jig Performances in Pumice Enrichment Plant of Industrial Minerals Inc. In: Akar A, Seyrankaya A, editors. 5th Industrial Raw Materials Symposium; 2004; Izmir, Turkey. p. 307–312.
  • [10] Bınıcı H, Durgun MY, Rızaoğlu T, Koluçolak M. Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates. Scientia Iranica. 2012; 19(3): 366–372.
  • [11] Tapan M, Depci T, Özvan A, Efe T, Oyan V. Effect of physical, chemical and electro-kinetic properties of pumice on strength development of pumice blended cements. Materials and Structures. 2013; 46: 1695–1706.
  • [12] Hossain KMA, Properties of volcanic pumice-based cement and lightweight concrete. Cement and Concrete Research, 2004; 34: 2, 283-291.
  • [13] Kilincarslan Ş, Davraz M, Akça M. The effect of pumice as aggregate on the mechanical and thermal properties of foam concrete, Arab. J. Geosci. 2018; 11: 1-6.
  • [14] Kilinçarslan Ş, Davraz M, Akça M. Investigation of the properties of pumice aggregate foam concretes, J. Eng. Sci. 2018; 6 (1): 148-153.
  • [15] Ersoy B, Sariisik A, Dikmen S, Sariisik G. Characterization of acidic pumice and determination of its electrokinetic properties in water, Powder Technol. 2010; 197 (1-2): 129-135.
  • [16] Yücel HE, Öz HÖ, Güneş M. The effects of acidic and basic pumice on physico-mechanical and durability properties of self-compacting concretes, Green Build. Constr. Econ. 2020; 21-36.
  • [17] Öz HÖ. Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate, Constr. Build. Mater. 2018; 166: 601-609.
  • [18] Soleimani A, Mahvi AH, Yaghmaeian K, Abbasnia A, Sharafi K, Alimohammadi M, Zamanzadeh M. Effect of modification by five different acids on pumice stone as natural and low-cost adsorbent for removal of humic acid from aqueous solutions‐Application of response surface methodology. J Mol Liq. 2019; 290: 111181.
  • [19] Çifçi Dİ, Meriç S. A review on pumice for water and wastewater treatment. Desal Water Treat. 2016; 57(39): 18131–18143.
  • [20] Tanyıldızı M, Gökalp İ. Utilization of pumice as aggregate in the concrete: A state of art. Constr Build Mater. 2023; 377: 131102.
  • [21] Gündüz L, Sarıışık A, Tozaçan B, Davraz M, Uğur İ, Çankıran O. Pumice Technology (Pumice Characterization). Isparta; 1998. p. 285.
  • [22] Akkurt I, Akyıldırım H, Mavi B, Kilincarslan S, Basyigit C. Photon attenuation coefficients of concrete includes barite in different rate. Ann Nucl Energy. 2010a; 37(7): 910–914.
  • [23] Akkurt I, Akyıldırım H, Mavi B, Kilincarslan S, Basyigit C. Radiation shielding of concrete containing zeolite. Radiat Meas. 2010b; 45(7): 827–830.
  • [24] Tellili B, Elmahroug Y, Souga C. Investigation on radiation shielding parameters of cerrobend alloys. Nucl Eng Technol. 2017; 49(8): 1758–1771.
  • [25] Alsaab AH, Zeghib S. Analysis of X-ray and gamma ray shielding performance of prepared polymer micro-composites. J Radiat Res Appl Sci. 2023; 16(4): 100708.
  • [26] Gunoglu K, Akkurt I. Radiation shielding properties of concrete containing magnetite. Prog Nucl Energy. 2021; 137: 103776.
  • [27] Matori KA, Sayyed MI, Sidek HAA, Zaid MHM, Singh VP. Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses. J Non-Cryst Solids. 2017; 457: 97–103.
  • [28] Ban CC, Khalaf MA, Ramli M, Ahmed NMA, Ahmad MS, Ali AMA, et al. Modern heavyweight concrete shielding: principles, industrial applications and future challenges; review. J Build Eng. 2021; 39: 102290.
  • [29] Kanagaraj B, Anand N, Andrushia AD, Naser MZ. Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities – a state-of-the-art review. Constr Build Mater. 2023; 404: 133260.
  • [30] Al-Buriahi MS, Alzahrani JS, Alrowaili ZA, Olarinoye IO, Sriwunkum C. Recycling of waste cathode-ray tube glasses as building materials for shielding structures in medical and nuclear facilities. Constr Build Mater. 2023; 376: 131029.
  • [31] Zayed M, El Khayatt AM, Petrounias P, Shahien MG, Mahmoud KA, Rashad AM, et al. From discarded waste to valuable products: barite combination with chrysotile mine waste to produce radiation-shielding concrete. Constr Build Mater. 2024; 417: 135334.
  • [32] Zhang P, Wittmann FH, Zhao T, Lehmann EH, Vontobel P. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl Eng Des. 2011; 241: 4758–4766.
  • [33] Wisnubroto DS, Zamroni H, Sumarbagiono R, Nurliati G. Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia. Nucl Eng Technol. 2021; 53: 549–561.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Şemsettin Kılınçarslan 0000-0001-8253-9357

Yasemin Şimşek Türker 0000-0002-3080-0215

Nuri Işıldar 0000-0001-6639-3650

Gönderilme Tarihi 1 Mayıs 2025
Kabul Tarihi 12 Eylül 2025
Erken Görünüm Tarihi 22 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 3

Kaynak Göster

APA Kılınçarslan, Ş., Şimşek Türker, Y., & Işıldar, N. (2025). Determination of Radiation Shielding Properties of Magnesium Oxychloride Cement with Acidic and Basic Pumice Aggregate. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(3), 1240-1252. https://doi.org/10.29109/gujsc.1688022

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526