Araştırma Makalesi
BibTex RIS Kaynak Göster

Model Predictive Control Method for Split Source Inverter Based Photovoltaic and Storage System

Yıl 2025, Cilt: 13 Sayı: 4, 1461 - 1475, 31.12.2025
https://doi.org/10.29109/gujsc.1724676

Öz

This paper proposes a grid-connected photovoltaic (PV) system that includes a storage unit. A split source inverter (SSI) is used for power conversion from PV and batteries to the grid. Since the SSI topology has the voltage boosting feature, it is possible to use a low-voltage PV system and battery. A bidirectional DC/DC converter is connected between the DC bus and the battery for charging and discharging the battery. The system model includes two power converters with six variables that need to be controlled. Two Proportional Integral (PI) controllers are used to generate the input and output current references of the SSI. The grid current reference is generated based on the grid power error, while the input current reference of the SSI is generated based on the DC link voltage error. A Maximum Power Point Tracking (MPPT) algorithm is used to generate the reference current of PV panels. The reference of the battery current is generated depending on the difference between the PV and the input current of the SSI. Hence, if the PV power is insufficient for transferring the reference power, the batteries provide the rest of the required power. The control of battery current, SSI’s input current and grid current are achieved by two independent Model Predictive Controllers (MPC). The performance of the proposed system structure and control method is investigated by simulation studies. The steady-state and dynamic response results show that the power transfer from sources to the grid is successfully achieved by the proposed system and control technique. In addition, total harmonic distortion in grid current is within the international limits.

Kaynakça

  • [1] Maka AOM, Alabid JM. Solar energy technology and its roles in sustainable development. Clean Energy. 2022; 6: 476–483.
  • [2] Kayabaşı R, Kaya M. Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji. 2020; 8: 262-278.
  • [3] Maghrabie HM, Elsaid K, Sayed ET, Radwan A, Abo-Khalil AG, Rezk H, Abdelkareem MA, Olabi AG. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. Journal of Energy Storage. 2022; 48: 103937.
  • [4] Prasad PAV, Dhanamjayulu C. An Overview on Multi-Level Inverter Topologies for Grid-Tied PV System. International Transactions on Electrical Energy Systems. 2023; 9690344: 1-55.
  • [5] Hazim HI, Baharin KA, Gan CK, Sabry AH, Humaidi AJ. Review on Optimization Techniques of PV/Inverter Ratio for Grid-Tie PV Systems. Applied Sciences. 2023; 13: 3155.
  • [6] Kolantla D, Mikkili S, Pendem SR, Desai AA. Critical review on various inverter topologies for PV system architectures. IET Renew. Power Gener. 2020; 14: 3418-3438.
  • [7] Gyawali B, Ajmal AM, Liu W, Yang Y. A review on modulation techniques of Quasi-Z-source inverter for grid-connected photovoltaic systems. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2024; 10: 100809.
  • [8] Lee SS, Lim RJS, Barzegarkhoo R, Lim CS, Grigoletto FB, Siwakoti YP. A Family of Single-Phase Single-Stage Boost Inverters. in IEEE Transactions on Industrial Electronics. 2023; 70: 7955-7964.
  • [9] Rasheduzzaman M, Fajri P, Kimball J, Deken B. Modeling, Analysis, and Control Design of a Single-Stage Boost Inverter. Energies. 2021;14; 4098.
  • [10] Chepp ED, Krenzinger A. A methodology for prediction and assessment of shading on PV systems. Solar Energy. 2021; 216: 537-550.
  • [11] Calcabrini A, Muttillo M, Weegink R, Manganiello P, Zeman M, Isabella O. A fully reconfigurable series-parallel photovoltaic module for higher energy yields in urban environments. Renewable Energy. 2021; 179: 1-11.
  • [12] Guler N, Bayhan S. MPPT-Based Model Predictive Control for Split Source PV Inverters. Middle East and North Africa Solar Conference (MENA-SC), Dubai, United Arab Emirates. 2023; 1-3.
  • [13] Nwaneto UC, Knight AM. Full-Order and Simplified Dynamic Phasor Models of a Single-Phase Two-Stage Grid-Connected PV System. in IEEE Access. 2023; 11: 26712-26728.
  • [14] Ismeil MA, Abdelaleem A, Nasrallah M, Mohamed EEM. Split source inverter: Topology and switching modulation improvements—A review. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2023; 5: 100240.
  • [15] Abu-Zaher M, Zhuo F, Orabi M, Hassan A, Gaafar MA. Dual-input configuration of three-phase split-source inverter for photovoltaic systems with independent maximum power point tracking. Electric Power Systems Research. 2024; 232: 2024, 110375.
  • [16] Mathew D, Naidu RC. A review on single-phase boost inverter technology for low power grid integrated solar PV applications. Ain Shams Engineering Journal. 2024; 15: 102365.
  • [17] Ismeil MA, Abdelaleem A, Ali AIM, Nasrallah M, Hussein HS, Mohamed EEM. A Comparison Analysis of a New Switched-Inductor and Conventional Split Source Inverter Structures. in IEEE Access. 2024; 12: 28013-28024.
  • [18] Elthokaby Y, Abdelsalam I, Abdel-Rahim N, Mohamed I. Standalone PV-based single-phase split-source inverter using model-predictive control. Alexandria Engineering Journal. 2023; 62: 357-367.
  • [19] Subhani N, Kannan R, Mahmud A, Blaabjerg F. Z-source inverter topologies with switched Z-impedance networks: A review. IET Power Electron. 2021; 14: 727–750.
  • [20] Samanbakhsh R, Koohi P, Ibanez FM, Martin F, Terzija V. A Z-source inverter with switched network in the grid-connected applications. International Journal of Electrical Power & Energy Systems. 2023; 147: 108819.
  • [21] Park JH, Kim HG, Nho EC, Chun TW, Choi J. Grid-connected PV System Using a Quasi-Z-source Inverter. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA. 2009; 925-929.
  • [22] Nannam HC, Banerjee A, Guerrero JM. Analysis of an interleaved control scheme employed in split source inverter based grid-tied photovoltaic systems. IET Renew Power Gener. 2021; 15: 1301–1314.
  • [23] Li Y, Anderson J, Peng FZ, and Liu D. Quasi-Z-Source Inverter for Photovoltaic Power Generation Systems. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA. 2009; 918-924.
  • [24] Liu J, Jiang S, Cao D, Peng FZ. A Digital Current Control of Quasi-Z-Source Inverter With Battery. in IEEE Transactions on Industrial Informatics. 2013; 9: 928-937.
  • [25] Cocco GM, Grigoletto FB, Scherer LG. et al. Modeling and Control of Hydro-PV Hybrid Power System with Three-Phase Three-Leg Split-Source Inverter. J Control Autom Electr Syst. 2022; 33: 1563–1575.
  • [26] Sabrié A, Battiston Al, Gauthier JY, Lin-Shi X. Three-phase bidirectional active split source inverter for automotive traction application. Mathematics and Computers in Simulation. 2024; 224: 96-118.
  • [27] Güler N. Proportional Resonant and Proportional Integral Based Control Strategy for Single Phase Split Source Inverters. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK. 2020; 510-514.
  • [28] Güler N. Multi-objective cost function based finite control set-sliding mode control strategy for single-phase split source inverters. Control Engineering Practice. 2022; 122: 105114.
  • [29] Elthokaby Y, Abdelsalam I, Abdel-Rahim N, Mohamed I. Simplified three-phase split-source inverter for PV system application controlled via model-predictive control. Int J Circ Theor Appl. 2024; 52: 2266-2289.
  • [30] Guler N, Komurcugil H. Energy Function Based Finite Control Set Predictive Control Strategy for Single-Phase Split Source Inverters. in IEEE Transactions on Industrial Electronics. 2022; 69: 5669-5679.
  • [31] Abdelhakim A, Mattavelli P, Boscaino V, Lullo G. Decoupled Control Scheme of Grid-Connected Split-Source Inverters. in IEEE Transactions on Industrial Electronics. 2017; 64: 6202-6211.
  • [32] Lotfy MW, Dabour SM, Mostafa RM, Almakhles DJ, Elmorshedy MF. Modeling and Control of a Voltage-Lift Cell Split-Source Inverter With MPPT for Photovoltaic Systems. in IEEE Access. 2023; 11: 54699-54712.
  • [33] Lotfy MW, Ramadan HS, Dabour SM. Smart EV charging via advanced ongrid MPPT-PV systems with quadratic-boost split-source inverters. Sci Rep. 2025; 15: 7841.
  • [34] Figueiredo RBF, Sguarezi AJ. Grid Connected Split Source Inverter with MPPT for Photovoltaic Generation. Journal of Production and Automation. 2021; 4: 1-13.
  • [35] Kihal A, Talbi B, Krama A, Laib A, Sahli A. A Multi-Functional Grid-Tied PV System Using a Split Source Inverter With Energy Management and Power Quality Improvement Features. in IEEE Access. 2025; 13: 29789-29800.
  • [36] Panati PU, Ramasamy S, Ahsan M, Haider, J, Rodrigues EMG. Indirect Effective Controlled Split Source Inverter-Based Parallel Active Power Filter for Enhancing Power Quality. Electronics. 2021; 10: 892.
  • [37] Irmak E, Güler N. A model predictive control-based hybrid MPPT method for boost converters. Int. J. Electron. 2020; 107: 1-16.
  • [38] Guler N, Biricik S, Bayhan S, Komurcugil H. Model Predictive Control of DC-DC SEPIC Converters with Auto-tuning Weighting Factor. IEEE Trans. Ind. Electron. 2020; 68: 9433–9443.
  • [39] Guler N, Bayhan S, Komurcugil H. Model Predictive Control Method with Auto-Tuning Weighting Factor for Bidirectional DC-DC Battery Chargers. CPE-POWERENG 2024 - 18th Int. Conf. Compat. Power Electron. Power Eng. Proc. 2024; 1–6.
  • [40] Guler N, Bayhan S, Komurcugil H. Equal weighted cost function based weighting factor tuning method for model predictive control in power converters. IET Power Electron. 2022; 15: 203–215.
  • [41] Roger DMFG. “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Std. 519-2014. 2014; 1-29.

Bölünmüş Kaynaklı Evirici Tabanlı Fotovoltaik ve Depolama Sistemi için Model Öngörülü Kontrol Yöntemi

Yıl 2025, Cilt: 13 Sayı: 4, 1461 - 1475, 31.12.2025
https://doi.org/10.29109/gujsc.1724676

Öz

Bu makale, depolama ünitesi içeren şebekeye bağlı bir fotovoltaik (PV) sistem önermektedir. PV sistem ve bataryalardan şebekeye güç aktarımı için Bölünmüş Kaynaklı Evirici (BKE) kullanılmıştır. BKE topolojisi gerilim yükseltme özelliğine sahip olduğundan düşük gerilimli PV sistem ve batarya kullanımı mümkün olmuştur. Bataryanın şarj ve deşarjı için DA bara ve batarya arasına çift yönlü bir DA/DA dönüştürücü bağlanmıştır. Sistem modeli, kontrol edilmesi gereken altı değişkene sahip iki güç dönüştürücüsünden oluşmaktadır. BKE’nin giriş ve çıkış akım referanslarını üretmek için iki adet Oransal İntegral (PI) kontrolcü kullanılmıştır. Şebeke akım referansı, güç hatasına göre üretilirken, BKE giriş akımının referansı ise DA tarafındaki kondansatör gerilim hatasına göre üretilmiştir. PV panellerin referans akımını üretmek için Maksimum Güç Noktası Takip (MGNT) algoritması kullanılmıştır. Batarya akımının referansı, PV ile BKE’nin giriş akımı arasındaki farka bağlı olarak üretilmektedir. Dolayısıyla, PV sistemin gücü referans güç değerini transfer etmek için yeterli olmazsa, eksik kalan güç bataryalar tarafından karşılanmaktadır. Batarya akımı, BKE giriş akımı ve şebeke akımının kontrolü iki bağımsız Model Öngörülü Kontrolcü (MÖK) tarafından sağlanmaktadır. Önerilen sistem yapısının ve kontrol yönteminin performansı, gerçekleştirilen simülasyon çalışmalarıyla değerlendirilmiştir. Kararlı durum ve dinamik geçişlere ait sonuçlar, kaynaklardan şebekeye güç transferinin önerilen sistem ve kontrol tekniği tarafından başarıyla sağlandığını göstermektedir. Ayrıca, şebeke akımındaki toplam harmonik bozulma oranı uluslararası sınırlar içindedir.

Kaynakça

  • [1] Maka AOM, Alabid JM. Solar energy technology and its roles in sustainable development. Clean Energy. 2022; 6: 476–483.
  • [2] Kayabaşı R, Kaya M. Fotovoltaik Modüllerde Faz Değiştiren Madde Kullanımı ve Verimlerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji. 2020; 8: 262-278.
  • [3] Maghrabie HM, Elsaid K, Sayed ET, Radwan A, Abo-Khalil AG, Rezk H, Abdelkareem MA, Olabi AG. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. Journal of Energy Storage. 2022; 48: 103937.
  • [4] Prasad PAV, Dhanamjayulu C. An Overview on Multi-Level Inverter Topologies for Grid-Tied PV System. International Transactions on Electrical Energy Systems. 2023; 9690344: 1-55.
  • [5] Hazim HI, Baharin KA, Gan CK, Sabry AH, Humaidi AJ. Review on Optimization Techniques of PV/Inverter Ratio for Grid-Tie PV Systems. Applied Sciences. 2023; 13: 3155.
  • [6] Kolantla D, Mikkili S, Pendem SR, Desai AA. Critical review on various inverter topologies for PV system architectures. IET Renew. Power Gener. 2020; 14: 3418-3438.
  • [7] Gyawali B, Ajmal AM, Liu W, Yang Y. A review on modulation techniques of Quasi-Z-source inverter for grid-connected photovoltaic systems. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2024; 10: 100809.
  • [8] Lee SS, Lim RJS, Barzegarkhoo R, Lim CS, Grigoletto FB, Siwakoti YP. A Family of Single-Phase Single-Stage Boost Inverters. in IEEE Transactions on Industrial Electronics. 2023; 70: 7955-7964.
  • [9] Rasheduzzaman M, Fajri P, Kimball J, Deken B. Modeling, Analysis, and Control Design of a Single-Stage Boost Inverter. Energies. 2021;14; 4098.
  • [10] Chepp ED, Krenzinger A. A methodology for prediction and assessment of shading on PV systems. Solar Energy. 2021; 216: 537-550.
  • [11] Calcabrini A, Muttillo M, Weegink R, Manganiello P, Zeman M, Isabella O. A fully reconfigurable series-parallel photovoltaic module for higher energy yields in urban environments. Renewable Energy. 2021; 179: 1-11.
  • [12] Guler N, Bayhan S. MPPT-Based Model Predictive Control for Split Source PV Inverters. Middle East and North Africa Solar Conference (MENA-SC), Dubai, United Arab Emirates. 2023; 1-3.
  • [13] Nwaneto UC, Knight AM. Full-Order and Simplified Dynamic Phasor Models of a Single-Phase Two-Stage Grid-Connected PV System. in IEEE Access. 2023; 11: 26712-26728.
  • [14] Ismeil MA, Abdelaleem A, Nasrallah M, Mohamed EEM. Split source inverter: Topology and switching modulation improvements—A review. e-Prime - Advances in Electrical Engineering, Electronics and Energy. 2023; 5: 100240.
  • [15] Abu-Zaher M, Zhuo F, Orabi M, Hassan A, Gaafar MA. Dual-input configuration of three-phase split-source inverter for photovoltaic systems with independent maximum power point tracking. Electric Power Systems Research. 2024; 232: 2024, 110375.
  • [16] Mathew D, Naidu RC. A review on single-phase boost inverter technology for low power grid integrated solar PV applications. Ain Shams Engineering Journal. 2024; 15: 102365.
  • [17] Ismeil MA, Abdelaleem A, Ali AIM, Nasrallah M, Hussein HS, Mohamed EEM. A Comparison Analysis of a New Switched-Inductor and Conventional Split Source Inverter Structures. in IEEE Access. 2024; 12: 28013-28024.
  • [18] Elthokaby Y, Abdelsalam I, Abdel-Rahim N, Mohamed I. Standalone PV-based single-phase split-source inverter using model-predictive control. Alexandria Engineering Journal. 2023; 62: 357-367.
  • [19] Subhani N, Kannan R, Mahmud A, Blaabjerg F. Z-source inverter topologies with switched Z-impedance networks: A review. IET Power Electron. 2021; 14: 727–750.
  • [20] Samanbakhsh R, Koohi P, Ibanez FM, Martin F, Terzija V. A Z-source inverter with switched network in the grid-connected applications. International Journal of Electrical Power & Energy Systems. 2023; 147: 108819.
  • [21] Park JH, Kim HG, Nho EC, Chun TW, Choi J. Grid-connected PV System Using a Quasi-Z-source Inverter. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA. 2009; 925-929.
  • [22] Nannam HC, Banerjee A, Guerrero JM. Analysis of an interleaved control scheme employed in split source inverter based grid-tied photovoltaic systems. IET Renew Power Gener. 2021; 15: 1301–1314.
  • [23] Li Y, Anderson J, Peng FZ, and Liu D. Quasi-Z-Source Inverter for Photovoltaic Power Generation Systems. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA. 2009; 918-924.
  • [24] Liu J, Jiang S, Cao D, Peng FZ. A Digital Current Control of Quasi-Z-Source Inverter With Battery. in IEEE Transactions on Industrial Informatics. 2013; 9: 928-937.
  • [25] Cocco GM, Grigoletto FB, Scherer LG. et al. Modeling and Control of Hydro-PV Hybrid Power System with Three-Phase Three-Leg Split-Source Inverter. J Control Autom Electr Syst. 2022; 33: 1563–1575.
  • [26] Sabrié A, Battiston Al, Gauthier JY, Lin-Shi X. Three-phase bidirectional active split source inverter for automotive traction application. Mathematics and Computers in Simulation. 2024; 224: 96-118.
  • [27] Güler N. Proportional Resonant and Proportional Integral Based Control Strategy for Single Phase Split Source Inverters. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK. 2020; 510-514.
  • [28] Güler N. Multi-objective cost function based finite control set-sliding mode control strategy for single-phase split source inverters. Control Engineering Practice. 2022; 122: 105114.
  • [29] Elthokaby Y, Abdelsalam I, Abdel-Rahim N, Mohamed I. Simplified three-phase split-source inverter for PV system application controlled via model-predictive control. Int J Circ Theor Appl. 2024; 52: 2266-2289.
  • [30] Guler N, Komurcugil H. Energy Function Based Finite Control Set Predictive Control Strategy for Single-Phase Split Source Inverters. in IEEE Transactions on Industrial Electronics. 2022; 69: 5669-5679.
  • [31] Abdelhakim A, Mattavelli P, Boscaino V, Lullo G. Decoupled Control Scheme of Grid-Connected Split-Source Inverters. in IEEE Transactions on Industrial Electronics. 2017; 64: 6202-6211.
  • [32] Lotfy MW, Dabour SM, Mostafa RM, Almakhles DJ, Elmorshedy MF. Modeling and Control of a Voltage-Lift Cell Split-Source Inverter With MPPT for Photovoltaic Systems. in IEEE Access. 2023; 11: 54699-54712.
  • [33] Lotfy MW, Ramadan HS, Dabour SM. Smart EV charging via advanced ongrid MPPT-PV systems with quadratic-boost split-source inverters. Sci Rep. 2025; 15: 7841.
  • [34] Figueiredo RBF, Sguarezi AJ. Grid Connected Split Source Inverter with MPPT for Photovoltaic Generation. Journal of Production and Automation. 2021; 4: 1-13.
  • [35] Kihal A, Talbi B, Krama A, Laib A, Sahli A. A Multi-Functional Grid-Tied PV System Using a Split Source Inverter With Energy Management and Power Quality Improvement Features. in IEEE Access. 2025; 13: 29789-29800.
  • [36] Panati PU, Ramasamy S, Ahsan M, Haider, J, Rodrigues EMG. Indirect Effective Controlled Split Source Inverter-Based Parallel Active Power Filter for Enhancing Power Quality. Electronics. 2021; 10: 892.
  • [37] Irmak E, Güler N. A model predictive control-based hybrid MPPT method for boost converters. Int. J. Electron. 2020; 107: 1-16.
  • [38] Guler N, Biricik S, Bayhan S, Komurcugil H. Model Predictive Control of DC-DC SEPIC Converters with Auto-tuning Weighting Factor. IEEE Trans. Ind. Electron. 2020; 68: 9433–9443.
  • [39] Guler N, Bayhan S, Komurcugil H. Model Predictive Control Method with Auto-Tuning Weighting Factor for Bidirectional DC-DC Battery Chargers. CPE-POWERENG 2024 - 18th Int. Conf. Compat. Power Electron. Power Eng. Proc. 2024; 1–6.
  • [40] Guler N, Bayhan S, Komurcugil H. Equal weighted cost function based weighting factor tuning method for model predictive control in power converters. IET Power Electron. 2022; 15: 203–215.
  • [41] Roger DMFG. “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems. IEEE Std. 519-2014. 2014; 1-29.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Depolama, Güç Elektroniği
Bölüm Araştırma Makalesi
Yazarlar

Ayberk Calpbinici 0000-0003-4023-0831

Naki Güler 0000-0003-4145-4247

Gönderilme Tarihi 22 Haziran 2025
Kabul Tarihi 9 Ekim 2025
Erken Görünüm Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Calpbinici, A., & Güler, N. (2025). Bölünmüş Kaynaklı Evirici Tabanlı Fotovoltaik ve Depolama Sistemi için Model Öngörülü Kontrol Yöntemi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(4), 1461-1475. https://doi.org/10.29109/gujsc.1724676

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526