Derleme
BibTex RIS Kaynak Göster

Energy Dissipation Analysis of Coated Lattice Structures

Yıl 2025, Sayı: Advanced Online Publication
https://doi.org/10.29109/gujsc.1735561

Öz

Additive Manufacturing (AM) technology enables the fabrication of lattice structures that are lightweight, mechanically superior, and geometrically complex. However, the brittle nature and low damping capacity of such structures can limit their usability under impact loading and dynamic conditions. To address these limitations, various surface coating methods have been employed to enhance the impact resistance and energy absorption capability of lattice structures. This study reviews the literature on the energy dissipation performance of lattice structures produced by additive manufacturing following surface coating applications. It summarizes the types of coatings applied to different lattice geometries and their effects on the dynamic behavior of these structures. In particular, viscoelastic coatings have been observed to significantly improve energy dissipation by promoting deformation distribution and damping vibrations. The findings provide guidance for the design and implementation of lattice structures aimed at improving mechanical reliability under dynamic conditions. The coating techniques applied in the reviewed studies are briefly examined. Application areas related to energy dissipation and future research directions are also discussed.

Kaynakça

  • [1] Güneş, M., & Zeyveli, M. (2025). 3D Printing Applications in the Biomedical Industry. GU Journal of Science, Part C, 13(1), 355–366
  • [2] Ozsolak, O. (2019). Eklemeli imalat yöntemleri ve kullanılan malzemeler. International Journal of Innovative Engineering Applications, 3(1)
  • [3] Gülcan, O. (2021). Eklemeli imalatla üretilen kafes yapılar. Makina Tasarım ve İmalat Dergisi, 19(2).
  • [4] Sunay, N., & Turgut, E. T. (2024). Eklemeli imalat teknolojilerinin havacılık sektöründe enerji verimliliğini artırma ve emisyon azaltma potansiyeli. Gazi University Journal of Science Part C: Design and Technology, 12(2), 548–566.
  • [5] Helou, M., & Kara, S. (2018). Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing, 31(3), 243-261
  • [6] Chen, L.-Y., Liang, S.-X., Liu, Y., & Zhang, L.-C. (2021). Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science & Engineering R, 146, 100648
  • [7] Jia, Z., Liu, F., Jiang, X., & Wang, L. (2020). Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 127, 150901.
  • [8] Erener, G., Gezer, İ., & Bahçe, E. (2022). Eklemeli imalat ve geleneksel imalat yöntemi ile üretilen CoCr alaşımı yüzeylerde hidroksiapatit (HAp) kaplamanın karşılaştırılması. YYÜ Fen Bilimleri Enstitüsü Dergisi (YYU JNAS), 27(1), 39–49.
  • [9] Le Monnier, B. P., Wells, F., Talebkeikhah, F., & Luterbacher, J. S. (2019). Atomic layer deposition on dispersed materials in liquid phase by stoichiometrically limited injections. Advanced Materials, 31(46), 1904914.
  • [10] Delaunois, F., Vitry, V., & Bonin, L. (Eds.). (2019). Electroless nickel plating: Fundamentals to applications. CRC Press, Taylor & Francis Group.
  • [11] Gaur, U. P., & Kamari, E. (2024). Applications of thermal spray coatings: A review. Journal of Thermal Spray and Engineering, 4(106-114).
  • [12] Dickerson, J. H., & Boccaccini, A. R. (2011). Electrophoretic deposition of nanomaterials. Springer.
  • [13] Anirudh, S., Krishnamurthy, S., Kandasubramanian, B., & Kumar, P. B. (2023). Probing into atomically thin layered nano-materials protective coating for aerospace and strategic defence application – A review. Journal of Alloys and Compounds, 968, 172203.
  • [14] Lapointe, V., Green, P. B., Chen, A. N., Buonsanti, R., & Majewski, M. B. (2024). Long live(d) CsPbBr3 superlattices: Colloidal atomic layer deposition for structural stability. Chemical Science, 15(4510-4518).
  • [15] Geng, X., Wang, M., & Hou, B. (2023). Experiment investigation of the compression behaviors of nickel-coated hybrid lattice structure with enhanced mechanical properties. Micromachines, 14(10), 1959.
  • [16] Liu, F., Yuan, H., Li, J., & Chen, M. (2024). Mechanical characterization of multifunctional metal-coated polymer lattice structures. Materials, 17(3), 741
  • [17] Liu, Y.-C., Hsiao, S.-N., Chen, Y.-H., Hsieh, P.-Y., & He, J.-L. (2023). High-power impulse magnetron sputter-deposited chromium-based coatings for corrosion protection. Coatings, 13(12), 2101.
  • [18] Pech, S., Kim, S., & Kim, N.-H. (2022). Magnetron sputter-deposited β-Ga₂O₃ films on c-sapphire substrate: Effect of rapid thermal annealing temperature on crystalline quality. Coatings, 12(2), 140.
  • [19] Bogdan, M., & Peter, I. (2024). A comprehensive understanding of thermal barrier coatings (TBCs): Applications, materials, coating design and failure mechanisms. Metals, 14(5), 575.
  • [20] Singh, S., Berndt, C. C., Singh Raman, R. K., Singh, H., & Ang, A. S. M. (2023). Applications and developments of thermal spray coatings for the iron and steel industry. Materials, 16(2), 516.
  • [21] Wang, L., He, L., Wang, X., Soleimanian, S., Yu, Y., Chen, G., Li, J., & Chen, M. (2023). Multiscale evaluation of mechanical properties for metal-coated lattice structures. Chinese Journal of Mechanical Engineering, 36, 106.
  • [22] Weeks, J. S., Gandhi, V., & Ravichandran, G. (2022). Shock compression behavior of stainless steel 316L octet-truss lattice structures. International Journal of Impact Engineering, 162, 104324.
  • [23] Purcell-Milton, F., Curutchet, A., & Gun'ko, Y. (2019). Electrophoretic deposition of quantum dots and characterisation of composites. Materials, 12(24), 4089.
  • [24] Chartarrayawadee, W., Moulton, S. E., Too, C. O., & Wallace, G. G. (2013). Fabrication of graphene electrodes by electrophoretic deposition and their synergistic effects with PEDOT and platinum. Chiang Mai Journal of Science, 40(4), 750-762.
  • [25] Wu, G., Wang, X., Wang, Y., Ji, C., Zhao, C., Gao, Y., & Tao, C. (2024). Investigation into the ballistic characterization of polyurea-coated spliced-shaped multilayer ceramic plates. International Journal of Impact Engineering, 185, 104867.
  • [26] Zhang, X., Meng, Q., Zhang, K., Zhu, R., Qu, Z., Li, Y., & He, R. (2023). 3D-printed bioinspired Al2O3/ Polyurea dual-phase architecture with high robustness, energy absorption, and cyclic life. Chemical Engineering Journal, 463, 142378.
  • [27] Qu, C., Zhang, N., Wang, C., Wang, T., Wang, Q., Li, S., & Chen, S. (2022). MoS2/CF synergistic reinforcement on tribological properties of NBR/PU/EP interpenetrating polymer networks. Tribology International, 167, 107384.
  • [28] Chen, H., Wang, W., Le, K., Liu, Y., Gao, X., Luo, Y., Zhao, X., Liu, X., Xu, S., & Liu, W. (2024). Effects of substrate roughness on the tribological properties of duplex plasma nitrided and MoS2 coated Ti6Al4V alloy. Tribology International, 191, 109123.
  • [29] Yang, Z., Ning, B., Chen, Y., Zhao, Q., Xu, Y., Gao, G., Tang, Y., Zhao, Y., & Zhan, H. (2023). Large lattice mismatch of nanocomposite coating: In-situ establishment of MoS2 by precursor and desulfurization reaction. Applied Surface Science, 639, 158147.
  • [30] Zhang, Z., Yang, Z., Qian, W., Chen, Y., Xu, Y., Xu, X., Zhao, Q., Li, H., Zhao, Y., & Zhan, H. (2022). Achieving enhanced toughness of a nanocomposite coating by lattice distortion at the variable metallic oxide interface. Materials & Design, 224, 111316.
  • [31] Zhou, Y., Xie, Y.-c., Pan, T., Zhu, W., Zhang, H., & Huang, G.-y. (2023). Flexible materials and structures for mitigating combined blast and fragment loadings – A review. International Journal of Impact Engineering, 181, 104759.
  • [32] Türkdönmez, İ., & İç, Y. T. (2025). Alümina (Al₂O₃) Takviyeli Petek Çekirdekli Sandviç Panellerin Yüksek Hızlı Darbe Tepkisi: Sayısal analiz çalışması. GU Journal of Science, Part C, 13(1), 367–381.
  • [33] Wang, X., Li, X., Yu, R.-P., Ren, J.-W., Zhang, Q.-C., Zhao, Z.-Y., Ni, C.-Y., Han, B., & Lu, T.-J. (2020). Enhanced vibration and damping characteristics of novel corrugated sandwich panels with Polyurea-metal laminate face sheets. Composite Structures, 251, 112591.
  • [34] Zhang, Z., Zhang, Z., & Huang, X. (2023). Experimental study on the impact response of the Polyurea-coated 3D auxetic lattice sandwich panels subjected to air explosion. Composite Structures, 323, 117500.
  • [35] Li, H., Liu, D., Dong, B., Sun, K., Zhao, J., Wang, Q., & Sun, W. (2022). Investigation of vibration suppression performance of composite pyramidal truss sandwich cylindrical shell panels with damping coating. Thin-Walled Structures, 181, 109980.
  • [36] Pai, A., Millan, M., R., Beppu, M., Marcos, B., V. & Shenoy, S. (2023). Experimental techniques evaluation of shielding materials and configurations subjected to Blast and Ballistic impacts: A State-of-the-Art Review. Thin-Walled Structures, 191, 111067.
  • [37] Aghajani, C., Wu, Q., Li, Y., & Fang, J. (2024). Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties and future directions. Thin-Walled Structures, 197, 111539.
  • [38] Wang, X., He, C., Yue, Z., Li, X., Yu, R., Ji, H., Zhao, Z., Zhang, Q., & Lu, T. J. (2022). Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels. Composites Part B: Engineering, 237, 109840.
  • [39] Pizzorni, M., Lertora, E., & Mandolfino, C. (2023). Energy absorption properties of a 3D-printed lattice-core foam composite under compressive and low-velocity impact loading. Materials Today Communications, 36, 106918.
  • [40] Deng, F., Nguyen, Q-K. & Zhang, Pu. (2022). Liquid metal lattice materials with simultaneously high strength and reusable energy absorption. Applied Materials Today, 29, 101671.
  • [41] Chiocca, A., Tamburrino, F., Frendo, F., & Paoli, A. (2022). Effects of coating on the fatigue endurance of FDM lattice structures. Procedia Structural Integrity, 42, 799-805.
  • [42] Wang, R., Shang, J., Li, X., Luo, Z., & Wu, W. (2018). Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Scientific Reports, 8(9604), 1-12.
  • [43] Zhang, Z., Chen, J., He, G., & Yang, G. (2019). Fatigue and mechanical behavior of Ti-6Al-4V alloy with CrN and TiN coating deposited by magnetic filtered cathodic vacuum arc process. Coatings, 9(10), 689.
  • [44] Zhang, R., Huang, W., Lyu, P., Yan, S., Wang, X., & Ju, J. (2022). Polyurea for blast and impact protection: A review. Polymers, 14(2670).
  • [45] Sazhenkov, N.A., Semenov, S.V., Voronov, L.V., Kurakin, A.D., Nikhamkin, M.S., Baxevanakis, K., Roy, A., Stergiou, T., & Silberschmidt, V.V. (2020). Polyurea-coated glass-fibre-reinforced laminate under high-speed impact: experimental study. Structural Integrity Procedia, 28, 1572-1578.

Kaplamalı Kafes Yapıların Enerji Sönümleme İncelemesi

Yıl 2025, Sayı: Advanced Online Publication
https://doi.org/10.29109/gujsc.1735561

Öz

Eklemeli imalat (Additive Manufacturing, AM) teknolojisi, yüksek karmaşıklığa sahip, hafif ve mekanik olarak üstün kafes yapıların üretilmesine olanak tanımaktadır. Ancak bu yapıların kırılgan doğası ve düşük sönümleme kapasitesi, darbeli yükleme ve dinamik koşullarda kullanımını sınırlayabilmektedir. Bu sınırlamaların üstesinden gelmek amacıyla, kafes yapıların darbe dayanımını ve enerji soğurma yeteneğini artırmak için çeşitli yüzey kaplama yöntemleri kullanılmaktadır. Bu çalışmada eklemeli imalat ile üretilen kafes yapıların kaplama işlemleri sonrasında enerji sönümleme performansları ile ilgili çalışmalar gözden geçirilmiştir. Hangi tip kafes yapılarına ne tür kaplamalar yapıldığı ve kaplamaların kafes yapısının dinamik davranışına etkileri derlenmiştir. Özellikle viskoelastik kaplamaların, deformasyonun yayılımını teşvik ederek ve titreşimleri sönümleyerek enerji sönümünü belirgin şekilde artırdığı gözlemlenmiştir. Elde edilen bulgular, kafes yapıların dinamik koşullarda mekanik güvenilirliğini artırmaya yönelik tasarım ve uygulamalara rehberlik etmektedir. Yapılan kaplamaların yöntemleri kısaca incelenmiştir. Enerji sönümleme için uygulama alanları ve gelecekte yapılabilecek çalışmalara değinilmiştir.

Kaynakça

  • [1] Güneş, M., & Zeyveli, M. (2025). 3D Printing Applications in the Biomedical Industry. GU Journal of Science, Part C, 13(1), 355–366
  • [2] Ozsolak, O. (2019). Eklemeli imalat yöntemleri ve kullanılan malzemeler. International Journal of Innovative Engineering Applications, 3(1)
  • [3] Gülcan, O. (2021). Eklemeli imalatla üretilen kafes yapılar. Makina Tasarım ve İmalat Dergisi, 19(2).
  • [4] Sunay, N., & Turgut, E. T. (2024). Eklemeli imalat teknolojilerinin havacılık sektöründe enerji verimliliğini artırma ve emisyon azaltma potansiyeli. Gazi University Journal of Science Part C: Design and Technology, 12(2), 548–566.
  • [5] Helou, M., & Kara, S. (2018). Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing, 31(3), 243-261
  • [6] Chen, L.-Y., Liang, S.-X., Liu, Y., & Zhang, L.-C. (2021). Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science & Engineering R, 146, 100648
  • [7] Jia, Z., Liu, F., Jiang, X., & Wang, L. (2020). Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 127, 150901.
  • [8] Erener, G., Gezer, İ., & Bahçe, E. (2022). Eklemeli imalat ve geleneksel imalat yöntemi ile üretilen CoCr alaşımı yüzeylerde hidroksiapatit (HAp) kaplamanın karşılaştırılması. YYÜ Fen Bilimleri Enstitüsü Dergisi (YYU JNAS), 27(1), 39–49.
  • [9] Le Monnier, B. P., Wells, F., Talebkeikhah, F., & Luterbacher, J. S. (2019). Atomic layer deposition on dispersed materials in liquid phase by stoichiometrically limited injections. Advanced Materials, 31(46), 1904914.
  • [10] Delaunois, F., Vitry, V., & Bonin, L. (Eds.). (2019). Electroless nickel plating: Fundamentals to applications. CRC Press, Taylor & Francis Group.
  • [11] Gaur, U. P., & Kamari, E. (2024). Applications of thermal spray coatings: A review. Journal of Thermal Spray and Engineering, 4(106-114).
  • [12] Dickerson, J. H., & Boccaccini, A. R. (2011). Electrophoretic deposition of nanomaterials. Springer.
  • [13] Anirudh, S., Krishnamurthy, S., Kandasubramanian, B., & Kumar, P. B. (2023). Probing into atomically thin layered nano-materials protective coating for aerospace and strategic defence application – A review. Journal of Alloys and Compounds, 968, 172203.
  • [14] Lapointe, V., Green, P. B., Chen, A. N., Buonsanti, R., & Majewski, M. B. (2024). Long live(d) CsPbBr3 superlattices: Colloidal atomic layer deposition for structural stability. Chemical Science, 15(4510-4518).
  • [15] Geng, X., Wang, M., & Hou, B. (2023). Experiment investigation of the compression behaviors of nickel-coated hybrid lattice structure with enhanced mechanical properties. Micromachines, 14(10), 1959.
  • [16] Liu, F., Yuan, H., Li, J., & Chen, M. (2024). Mechanical characterization of multifunctional metal-coated polymer lattice structures. Materials, 17(3), 741
  • [17] Liu, Y.-C., Hsiao, S.-N., Chen, Y.-H., Hsieh, P.-Y., & He, J.-L. (2023). High-power impulse magnetron sputter-deposited chromium-based coatings for corrosion protection. Coatings, 13(12), 2101.
  • [18] Pech, S., Kim, S., & Kim, N.-H. (2022). Magnetron sputter-deposited β-Ga₂O₃ films on c-sapphire substrate: Effect of rapid thermal annealing temperature on crystalline quality. Coatings, 12(2), 140.
  • [19] Bogdan, M., & Peter, I. (2024). A comprehensive understanding of thermal barrier coatings (TBCs): Applications, materials, coating design and failure mechanisms. Metals, 14(5), 575.
  • [20] Singh, S., Berndt, C. C., Singh Raman, R. K., Singh, H., & Ang, A. S. M. (2023). Applications and developments of thermal spray coatings for the iron and steel industry. Materials, 16(2), 516.
  • [21] Wang, L., He, L., Wang, X., Soleimanian, S., Yu, Y., Chen, G., Li, J., & Chen, M. (2023). Multiscale evaluation of mechanical properties for metal-coated lattice structures. Chinese Journal of Mechanical Engineering, 36, 106.
  • [22] Weeks, J. S., Gandhi, V., & Ravichandran, G. (2022). Shock compression behavior of stainless steel 316L octet-truss lattice structures. International Journal of Impact Engineering, 162, 104324.
  • [23] Purcell-Milton, F., Curutchet, A., & Gun'ko, Y. (2019). Electrophoretic deposition of quantum dots and characterisation of composites. Materials, 12(24), 4089.
  • [24] Chartarrayawadee, W., Moulton, S. E., Too, C. O., & Wallace, G. G. (2013). Fabrication of graphene electrodes by electrophoretic deposition and their synergistic effects with PEDOT and platinum. Chiang Mai Journal of Science, 40(4), 750-762.
  • [25] Wu, G., Wang, X., Wang, Y., Ji, C., Zhao, C., Gao, Y., & Tao, C. (2024). Investigation into the ballistic characterization of polyurea-coated spliced-shaped multilayer ceramic plates. International Journal of Impact Engineering, 185, 104867.
  • [26] Zhang, X., Meng, Q., Zhang, K., Zhu, R., Qu, Z., Li, Y., & He, R. (2023). 3D-printed bioinspired Al2O3/ Polyurea dual-phase architecture with high robustness, energy absorption, and cyclic life. Chemical Engineering Journal, 463, 142378.
  • [27] Qu, C., Zhang, N., Wang, C., Wang, T., Wang, Q., Li, S., & Chen, S. (2022). MoS2/CF synergistic reinforcement on tribological properties of NBR/PU/EP interpenetrating polymer networks. Tribology International, 167, 107384.
  • [28] Chen, H., Wang, W., Le, K., Liu, Y., Gao, X., Luo, Y., Zhao, X., Liu, X., Xu, S., & Liu, W. (2024). Effects of substrate roughness on the tribological properties of duplex plasma nitrided and MoS2 coated Ti6Al4V alloy. Tribology International, 191, 109123.
  • [29] Yang, Z., Ning, B., Chen, Y., Zhao, Q., Xu, Y., Gao, G., Tang, Y., Zhao, Y., & Zhan, H. (2023). Large lattice mismatch of nanocomposite coating: In-situ establishment of MoS2 by precursor and desulfurization reaction. Applied Surface Science, 639, 158147.
  • [30] Zhang, Z., Yang, Z., Qian, W., Chen, Y., Xu, Y., Xu, X., Zhao, Q., Li, H., Zhao, Y., & Zhan, H. (2022). Achieving enhanced toughness of a nanocomposite coating by lattice distortion at the variable metallic oxide interface. Materials & Design, 224, 111316.
  • [31] Zhou, Y., Xie, Y.-c., Pan, T., Zhu, W., Zhang, H., & Huang, G.-y. (2023). Flexible materials and structures for mitigating combined blast and fragment loadings – A review. International Journal of Impact Engineering, 181, 104759.
  • [32] Türkdönmez, İ., & İç, Y. T. (2025). Alümina (Al₂O₃) Takviyeli Petek Çekirdekli Sandviç Panellerin Yüksek Hızlı Darbe Tepkisi: Sayısal analiz çalışması. GU Journal of Science, Part C, 13(1), 367–381.
  • [33] Wang, X., Li, X., Yu, R.-P., Ren, J.-W., Zhang, Q.-C., Zhao, Z.-Y., Ni, C.-Y., Han, B., & Lu, T.-J. (2020). Enhanced vibration and damping characteristics of novel corrugated sandwich panels with Polyurea-metal laminate face sheets. Composite Structures, 251, 112591.
  • [34] Zhang, Z., Zhang, Z., & Huang, X. (2023). Experimental study on the impact response of the Polyurea-coated 3D auxetic lattice sandwich panels subjected to air explosion. Composite Structures, 323, 117500.
  • [35] Li, H., Liu, D., Dong, B., Sun, K., Zhao, J., Wang, Q., & Sun, W. (2022). Investigation of vibration suppression performance of composite pyramidal truss sandwich cylindrical shell panels with damping coating. Thin-Walled Structures, 181, 109980.
  • [36] Pai, A., Millan, M., R., Beppu, M., Marcos, B., V. & Shenoy, S. (2023). Experimental techniques evaluation of shielding materials and configurations subjected to Blast and Ballistic impacts: A State-of-the-Art Review. Thin-Walled Structures, 191, 111067.
  • [37] Aghajani, C., Wu, Q., Li, Y., & Fang, J. (2024). Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties and future directions. Thin-Walled Structures, 197, 111539.
  • [38] Wang, X., He, C., Yue, Z., Li, X., Yu, R., Ji, H., Zhao, Z., Zhang, Q., & Lu, T. J. (2022). Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels. Composites Part B: Engineering, 237, 109840.
  • [39] Pizzorni, M., Lertora, E., & Mandolfino, C. (2023). Energy absorption properties of a 3D-printed lattice-core foam composite under compressive and low-velocity impact loading. Materials Today Communications, 36, 106918.
  • [40] Deng, F., Nguyen, Q-K. & Zhang, Pu. (2022). Liquid metal lattice materials with simultaneously high strength and reusable energy absorption. Applied Materials Today, 29, 101671.
  • [41] Chiocca, A., Tamburrino, F., Frendo, F., & Paoli, A. (2022). Effects of coating on the fatigue endurance of FDM lattice structures. Procedia Structural Integrity, 42, 799-805.
  • [42] Wang, R., Shang, J., Li, X., Luo, Z., & Wu, W. (2018). Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Scientific Reports, 8(9604), 1-12.
  • [43] Zhang, Z., Chen, J., He, G., & Yang, G. (2019). Fatigue and mechanical behavior of Ti-6Al-4V alloy with CrN and TiN coating deposited by magnetic filtered cathodic vacuum arc process. Coatings, 9(10), 689.
  • [44] Zhang, R., Huang, W., Lyu, P., Yan, S., Wang, X., & Ju, J. (2022). Polyurea for blast and impact protection: A review. Polymers, 14(2670).
  • [45] Sazhenkov, N.A., Semenov, S.V., Voronov, L.V., Kurakin, A.D., Nikhamkin, M.S., Baxevanakis, K., Roy, A., Stergiou, T., & Silberschmidt, V.V. (2020). Polyurea-coated glass-fibre-reinforced laminate under high-speed impact: experimental study. Structural Integrity Procedia, 28, 1572-1578.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Dinamikler, Titreşim ve Titreşim Kontrolü, Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları, Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Derleme
Yazarlar

Murat Avcı 0000-0003-3363-8636

Ömer Keleş 0000-0002-3480-3456

Gönderilme Tarihi 5 Temmuz 2025
Kabul Tarihi 22 Eylül 2025
Erken Görünüm Tarihi 3 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Avcı, M., & Keleş, Ö. (2025). Kaplamalı Kafes Yapıların Enerji Sönümleme İncelemesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji(Advanced Online Publication). https://doi.org/10.29109/gujsc.1735561

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526