Araştırma Makalesi
BibTex RIS Kaynak Göster

Layer-Paused FFF-Based Manufacturing of PLA-Hemp Composites: Mechanical Behavior and Failure Morphology

Yıl 2025, Cilt: 13 Sayı: 4, 1431 - 1440, 31.12.2025
https://doi.org/10.29109/gujsc.1747040

Öz

In this study, polylactic acid (PLA)-hemp composite samples were fabricated using a layer-paused fused filament fabrication (FFF) method, in which natural hemp fibers were manually inserted into pre-designed internal channels generated via computer-aided design (CAD). The novelty of this work lies in the introduction of a simple yet effective manufacturing approach that enables the direct integration of continuous natural fibers into the FFF process without requiring filament modification. This approach allows controlled fiber alignment and improved structural performance while maintaining the accessibility and sustainability of the FFF technique. Mechanical testing revealed that hemp fiber reinforcement increased the maximum tensile force from 1545 N to 1999 N (30%), while the displacement at maximum force decreased from 7.8 mm to 7.2 mm (8.7%), indicating a moderate reduction in ductility. Scanning electron microscopy (SEM) further confirmed the presence of fiber pull-out and interfacial separation as dominant fracture mechanisms. These results highlight the potential of the proposed method for advancing sustainable natural fiber-reinforced composites produced via additive manufacturing.

Kaynakça

  • [1] Yang B. The influence of infill density on the mechanical properties of PLA samples in FDM 3D printing. Journal of Physics: Conference Series 2025; 3019(1): 012046.
  • [2] Özmen E, Ertek C. Eklemeli imalat teknolojilerinde kullanılan biyomalzemeler ve biyomedikal uygulamaları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 2022; 10(4): 733–747.
  • [3] Anderson I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing 2017; 4(2): 110–115.
  • [4] Liu H, Zhang B, Zhou L, Li J, Zhang J, Chen X, Xu S, He H. Synergistic effects of cellulose nanocrystals–organic montmorillonite as hybrid nanofillers for enhancing mechanical, crystallization, and heat-resistant properties of three-dimensional printed poly(lactic acid) nanocomposites. Polymer Engineering & Science 2021; 61(12): 2985–3000.
  • [5] Li Z, Liu L, Rao Y, Ran L, Wu T, Nie R, Anna DS, Li Y, Che Z. Mechanical and antibacterial properties of oriented poly(lactic acid). Polymer Engineering & Science 2019; 59(10): 2121–2127.
  • [6] Qiang T, Wang J, Wolcott MP. Facile fabrication of 100% bio-based and degradable ternary cellulose/PHBV/PLA composites. Materials 2018; 11(2): 330.
  • [7] Öz Ö, Öztürk FH. An investigation on failure behaviour of bonded polylactic acid adherends produced by 3D printing process: Experimental and numerical approach. J. Braz. Soc. Mech. Sci. Eng. 2023; 45(8): 399.
  • [8] Debeli DK, Tebyetekerwa M, Hao J, Jiao F, Guo J. Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing. Polymer Composites 2018; 39(S3): E1867–E1879.
  • [9] Kuschmitz S, Schirp A, Busse J, Watschke H, Schirp C, Vietor T. Development and processing of continuous flax and carbon fiber-reinforced thermoplastic composites by a modified material extrusion process. Materials 2021; 14(9): 2332.
  • [10] Olam M, Tosun N. 3D-printed polylactide/hydroxyapatite/titania composite filaments. Materials Chemistry and Physics 2022; 276: 125267.
  • [11] Alao PF, Marrot L, Kallakas H, Just A, Poltimäe T, Kers J. Effect of hemp fiber surface treatment on the moisture/water resistance and reaction to fire of reinforced PLA composites. Materials 2021; 14(15): 4332.
  • [12] Tsou C-H, Yao W-H, Wu C-S, Tsou C-Y, Hung W-S, Chen J-C, Guo J, Yuan S, Wen E, Wang R-Y, Suen M-C, Liu S-C, De Guzman MR. Preparation and characterization of renewable composites from polylactide and rice husk for 3D printing applications. J. Polym. Res. 2019; 26(9): 227.
  • [13] Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp reinforced polylactic acid (PLA) composite produced by fused filament fabrication (FFF). HJBC 2022; 50(3): 239–246.
  • [14] Singamneni S, Behera MP, Truong D, Le Guen MJ, Macrae E, Pickering K. Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form. Journal of Materials Research and Technology 2021; 15: 936–949.
  • [15] Moetazedian A, Gleadall A, Han X, Ekinci A, Mele E, Silberschmidt VV. Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing 2021; 38: 101764.
  • [16] Yang J, Li W, Mu B, Xu H, Hou X, Yang Y. Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity. International Journal of Biological Macromolecules 2022; 202: 482–493.
  • [17] Manaia JP, Manaia AT, Rodrigues L. Industrial hemp fibers: An overview. Fibers 2019; 7(12): 106.
  • [18] Girisha L, Saravanan R, Kumarasan T, Pitchandi P, Sakthi S, Nanthakumar S, Girimurugan R. Hemp fibre-reinforced polylactic acid composites: A sustainable material for engineering and industry. In: Moharana S, Sahu BB, Nayak AK, Tiwari SK (Eds). Polymer Composites: Fundamentals and Applications. Springer Nature, Singapore; 2024: 217–248.
  • [19] Xiao X, Chevali VS, Song P, He D, Wang H. Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Composites Science and Technology 2019; 184: 107887.
  • [20] Antony S, Cherouat A, Montay G. Fabrication and characterization of hemp fibre-based 3D printed honeycomb sandwich structure by FDM process. Applied Composite Materials 2020; 27.
  • [21] Beg MDH, Pickering KL, Akindoyo JO, Gauss C. Recyclable hemp hurd fibre-reinforced PLA composites for 3D printing. Journal of Materials Research and Technology 2024; 33: 4439–4447.
  • [22] Siva R, Sundar Reddy Nemali S, Kishore Kunchapu S, Gokul K, Arun Kumar T. Comparison of mechanical properties and water absorption test on injection molding and extrusion-injection molding thermoplastic hemp fiber composite. Materials Today: Proceedings 2021; 47: 4382–4386.
  • [23] Arnold J, Smith DA. 3D printed polylactic acid–hemp fiber composites: Mechanical, thermal, and microcomputed tomography data. Data in Brief 2021; 39: 107534.
  • [24] Le Duigou A, Barbé A, Guillou E, Castro M. 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials & Design 2019; 180: 107884.
  • [25] Matsuzaki R, Ueda M, Namiki M, Jeong T-K, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016; 6: 23058.
  • [26] Zouari M, Devallance DB, Marrot L. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp–polylactic acid (PLA) composites. Materials 2022; 15(6): 2271.
  • [27] Xing D, Wang H, Tao Y, Zhang J, Li P, Koubaa A. 3D-printing continuous plant fiber/polylactic acid composites with lightweight and high strength. Polymer Composites 2025; 46(6): 4967–4980.
  • [28] Temiz A. A response surface methodology investigation into the optimization of manufacturing time and quality for FFF 3D printed PLA parts. Rapid Prototyping Journal 2024; 30(10): 2007–2020.
  • [29] Islam S, Hasan MB, Kodrić M, Motaleb KZMA, Karim FE, Islam MR. Mechanical properties of hemp fiber-reinforced thermoset and thermoplastic polymer composites: A comprehensive review. SPE Polymers 2025; 6(1): e10173.
  • [30] Öztürk FH, Öz Ö. Heat-treatment and water immersion effect on mechanical properties and joint strength of 3D-printed polylactic acid parts. Polymers for Advanced Technologies 2024; 35(11): e6624.
  • [31] Öz Ö, Öztürk FH. Yazdırma açısının 3B yazıcıda üretilen PLA numunenin mekanik özellikleri üzerine etkisinin deneysel ve sonlu elemanlar metodu ile incelenmesi. Politeknik Dergisi 2023; 26(2): 529–540.
  • [32] Shebaz Ahmed JP, Sudarsan S, Parthiban E, Trofimov E, Sridhar B. Exploration of mechanical properties of hemp fiber/flax fiber reinforced composites based on biopolymer and epoxy resin. Materials Today: Proceedings 2023.
  • [33] ASTM D3039/D3039M-08. Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA; 2014.
  • [34] Jahangir MN, Billah KMM, Lin Y, Roberson DA, Wicker RB, Espalin D. Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber. Additive Manufacturing 2019; 28: 354–364.
  • [35] Öztürk FH. Investigation of failure loads of adhesive bonded and induction welded joints on similar and dissimilar substrates. Int. Adv. Res. Eng. J. 2024; 8(3): 167–174.
  • [36] Öz Ö, Öztürk FH. Polimer kompozit üretiminde kullanılabilecek iki eksenli toz karıştırıcı imalatı ve test edilmesi. DEUFMD 2022; 24(71): 403–414.
  • [37] Ginoux G, Wu X, Laqraa C, Soulat D, Paux J, Ferreira M, Labanieh AR, Allaoui S. Continuous additive manufacturing of hemp yarn-reinforced biocomposites with improved impregnation method. Composites Science and Technology 2024; 250: 110561.
  • [38] Gunti R, Ratna Prasad AV, Gupta AVSSKS. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites 2018; 39(4): 1125–1136.
  • [39] Oliver-Ortega H, Tarrés Q, Mutjé P, Delgado-Aguilar M, Méndez JA, Espinach FX. Impact strength and water uptake behavior of bleached kraft softwood-reinforced PLA composites as alternative to PP-based materials. Polymers 2020; 12(9): 2144.
  • [40] Averett RD, Realff ML, Jacob K, Cakmak M, Yalcin B. The mechanical behavior of poly(lactic acid) unreinforced and nanocomposite films subjected to monotonic and fatigue loading conditions. Journal of Composite Materials 2011; 45(26): 2717–2727.
  • [41] Mileo PGM, Krauter CM, Sanders JM, Browning AR, Halls MD. Molecular-scale exploration of mechanical properties and interactions of poly(lactic acid) with cellulose and chitin. ACS Omega 2023; 8(45): 42417–42428.
  • [42] Xu H, Xie L, Jiang X, Hakkarainen M, Chen J-B, Zhong G-J, Li Z-M. Structural basis for unique hierarchical cylindrites induced by ultrahigh shear gradient in single natural fiber reinforced poly(lactic acid) green composites. Biomacromolecules 2014; 15(5): 1676–1686.
  • [43] Ketata N, Ejday M, Grohens Y, Seantier B, Guermazi N. Investigation of the hybridization effect on mechanical properties of natural fiber reinforced biosourced composites. Journal of Composite Materials 2024; 58(17): 1965–1985.
  • [44] Wan Ishak WH, Rosli NA, Ahmad I. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Sci. Rep. 2020; 10: 11342.
  • [45] Hao M, Wu H. Effect of in situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polymer Composites 2018; 39(S1): E174–E187.
  • [46] Liu H, Song W, Chen F, Guo L, Zhang J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011; 44(6): 1513–1522.
  • [47] Yu T, Sun F, Lu M, Li Y. Water absorption and hygrothermal aging behavior of short ramie fiber-reinforced poly(lactic acid) composites. Polymer Composites 2018; 39(4): 1098–1104.
  • [48] Yang Z, Feng X, Xu M, Rodrigue D. Properties of poplar fiber/PLA composites: Comparison on the effect of maleic anhydride and KH-550 modification of poplar fiber. Polymers 2020; 12(3): 729.
  • [49] Sarker F, Potluri P, Afroj S, Koncherry V, Novoselov KS, Karim N. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Appl. Mater. Interfaces 2019; 11(23): 21166–21176.

Katman Duraklamalı FFF Tabanlı PLA-Kenevir Kompozit Üretimi: Mekanik Davranış ve Hasar Morfolojisi

Yıl 2025, Cilt: 13 Sayı: 4, 1431 - 1440, 31.12.2025
https://doi.org/10.29109/gujsc.1747040

Öz

Bu çalışmada, bilgisayar destekli tasarım (CAD) ile oluşturulan önceden tasarlanmış iç kanallara doğal kenevir liflerinin elle yerleştirilmesiyle, katman duraklatmalı ergitilmiş filament imalatı (FFF) yöntemi kullanılarak polilaktik asit (PLA)-kenevir kompozit numuneleri üretilmiştir. Bu çalışmanın yeniliği, filament modifikasyonu gerektirmeksizin sürekli doğal liflerin doğrudan FFF sürecine entegre edilmesine olanak tanıyan basit ancak etkili bir üretim yaklaşımının sunulmasıdır. Bu yaklaşım, lif yönelimini kontrol edilebilir kılmakta ve yapısal performansı iyileştirirken FFF tekniğinin erişilebilirliğini ve sürdürülebilirliğini korumaktadır. Mekanik testler, kenevir lifi takviyesinin maksimum çekme kuvvetini 1545 N’den 1999 N’ye (%30) artırdığını, maksimum kuvvette yer değiştirme değerini ise 7.8 mm’den 7.2 mm’ye (%8,7) düşürdüğünü ortaya koymuş, bu durum süneklilikte orta düzeyde bir azalmaya işaret etmiştir. Taramalı elektron mikroskobu (SEM) analizleri, baskın kırılma mekanizmaları olarak lif çekilmesi ve ara yüzey ayrılmasının varlığını doğrulamıştır. Elde edilen sonuçlar, önerilen yöntemin eklemeli imalat ile sürdürülebilir doğal lif takviyeli kompozitlerin geliştirilmesi açısından potansiyelini vurgulamaktadır.

Kaynakça

  • [1] Yang B. The influence of infill density on the mechanical properties of PLA samples in FDM 3D printing. Journal of Physics: Conference Series 2025; 3019(1): 012046.
  • [2] Özmen E, Ertek C. Eklemeli imalat teknolojilerinde kullanılan biyomalzemeler ve biyomedikal uygulamaları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 2022; 10(4): 733–747.
  • [3] Anderson I. Mechanical properties of specimens 3D printed with virgin and recycled polylactic acid. 3D Printing and Additive Manufacturing 2017; 4(2): 110–115.
  • [4] Liu H, Zhang B, Zhou L, Li J, Zhang J, Chen X, Xu S, He H. Synergistic effects of cellulose nanocrystals–organic montmorillonite as hybrid nanofillers for enhancing mechanical, crystallization, and heat-resistant properties of three-dimensional printed poly(lactic acid) nanocomposites. Polymer Engineering & Science 2021; 61(12): 2985–3000.
  • [5] Li Z, Liu L, Rao Y, Ran L, Wu T, Nie R, Anna DS, Li Y, Che Z. Mechanical and antibacterial properties of oriented poly(lactic acid). Polymer Engineering & Science 2019; 59(10): 2121–2127.
  • [6] Qiang T, Wang J, Wolcott MP. Facile fabrication of 100% bio-based and degradable ternary cellulose/PHBV/PLA composites. Materials 2018; 11(2): 330.
  • [7] Öz Ö, Öztürk FH. An investigation on failure behaviour of bonded polylactic acid adherends produced by 3D printing process: Experimental and numerical approach. J. Braz. Soc. Mech. Sci. Eng. 2023; 45(8): 399.
  • [8] Debeli DK, Tebyetekerwa M, Hao J, Jiao F, Guo J. Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing. Polymer Composites 2018; 39(S3): E1867–E1879.
  • [9] Kuschmitz S, Schirp A, Busse J, Watschke H, Schirp C, Vietor T. Development and processing of continuous flax and carbon fiber-reinforced thermoplastic composites by a modified material extrusion process. Materials 2021; 14(9): 2332.
  • [10] Olam M, Tosun N. 3D-printed polylactide/hydroxyapatite/titania composite filaments. Materials Chemistry and Physics 2022; 276: 125267.
  • [11] Alao PF, Marrot L, Kallakas H, Just A, Poltimäe T, Kers J. Effect of hemp fiber surface treatment on the moisture/water resistance and reaction to fire of reinforced PLA composites. Materials 2021; 14(15): 4332.
  • [12] Tsou C-H, Yao W-H, Wu C-S, Tsou C-Y, Hung W-S, Chen J-C, Guo J, Yuan S, Wen E, Wang R-Y, Suen M-C, Liu S-C, De Guzman MR. Preparation and characterization of renewable composites from polylactide and rice husk for 3D printing applications. J. Polym. Res. 2019; 26(9): 227.
  • [13] Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp reinforced polylactic acid (PLA) composite produced by fused filament fabrication (FFF). HJBC 2022; 50(3): 239–246.
  • [14] Singamneni S, Behera MP, Truong D, Le Guen MJ, Macrae E, Pickering K. Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form. Journal of Materials Research and Technology 2021; 15: 936–949.
  • [15] Moetazedian A, Gleadall A, Han X, Ekinci A, Mele E, Silberschmidt VV. Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing 2021; 38: 101764.
  • [16] Yang J, Li W, Mu B, Xu H, Hou X, Yang Y. Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity. International Journal of Biological Macromolecules 2022; 202: 482–493.
  • [17] Manaia JP, Manaia AT, Rodrigues L. Industrial hemp fibers: An overview. Fibers 2019; 7(12): 106.
  • [18] Girisha L, Saravanan R, Kumarasan T, Pitchandi P, Sakthi S, Nanthakumar S, Girimurugan R. Hemp fibre-reinforced polylactic acid composites: A sustainable material for engineering and industry. In: Moharana S, Sahu BB, Nayak AK, Tiwari SK (Eds). Polymer Composites: Fundamentals and Applications. Springer Nature, Singapore; 2024: 217–248.
  • [19] Xiao X, Chevali VS, Song P, He D, Wang H. Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock. Composites Science and Technology 2019; 184: 107887.
  • [20] Antony S, Cherouat A, Montay G. Fabrication and characterization of hemp fibre-based 3D printed honeycomb sandwich structure by FDM process. Applied Composite Materials 2020; 27.
  • [21] Beg MDH, Pickering KL, Akindoyo JO, Gauss C. Recyclable hemp hurd fibre-reinforced PLA composites for 3D printing. Journal of Materials Research and Technology 2024; 33: 4439–4447.
  • [22] Siva R, Sundar Reddy Nemali S, Kishore Kunchapu S, Gokul K, Arun Kumar T. Comparison of mechanical properties and water absorption test on injection molding and extrusion-injection molding thermoplastic hemp fiber composite. Materials Today: Proceedings 2021; 47: 4382–4386.
  • [23] Arnold J, Smith DA. 3D printed polylactic acid–hemp fiber composites: Mechanical, thermal, and microcomputed tomography data. Data in Brief 2021; 39: 107534.
  • [24] Le Duigou A, Barbé A, Guillou E, Castro M. 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials & Design 2019; 180: 107884.
  • [25] Matsuzaki R, Ueda M, Namiki M, Jeong T-K, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016; 6: 23058.
  • [26] Zouari M, Devallance DB, Marrot L. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp–polylactic acid (PLA) composites. Materials 2022; 15(6): 2271.
  • [27] Xing D, Wang H, Tao Y, Zhang J, Li P, Koubaa A. 3D-printing continuous plant fiber/polylactic acid composites with lightweight and high strength. Polymer Composites 2025; 46(6): 4967–4980.
  • [28] Temiz A. A response surface methodology investigation into the optimization of manufacturing time and quality for FFF 3D printed PLA parts. Rapid Prototyping Journal 2024; 30(10): 2007–2020.
  • [29] Islam S, Hasan MB, Kodrić M, Motaleb KZMA, Karim FE, Islam MR. Mechanical properties of hemp fiber-reinforced thermoset and thermoplastic polymer composites: A comprehensive review. SPE Polymers 2025; 6(1): e10173.
  • [30] Öztürk FH, Öz Ö. Heat-treatment and water immersion effect on mechanical properties and joint strength of 3D-printed polylactic acid parts. Polymers for Advanced Technologies 2024; 35(11): e6624.
  • [31] Öz Ö, Öztürk FH. Yazdırma açısının 3B yazıcıda üretilen PLA numunenin mekanik özellikleri üzerine etkisinin deneysel ve sonlu elemanlar metodu ile incelenmesi. Politeknik Dergisi 2023; 26(2): 529–540.
  • [32] Shebaz Ahmed JP, Sudarsan S, Parthiban E, Trofimov E, Sridhar B. Exploration of mechanical properties of hemp fiber/flax fiber reinforced composites based on biopolymer and epoxy resin. Materials Today: Proceedings 2023.
  • [33] ASTM D3039/D3039M-08. Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA; 2014.
  • [34] Jahangir MN, Billah KMM, Lin Y, Roberson DA, Wicker RB, Espalin D. Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber. Additive Manufacturing 2019; 28: 354–364.
  • [35] Öztürk FH. Investigation of failure loads of adhesive bonded and induction welded joints on similar and dissimilar substrates. Int. Adv. Res. Eng. J. 2024; 8(3): 167–174.
  • [36] Öz Ö, Öztürk FH. Polimer kompozit üretiminde kullanılabilecek iki eksenli toz karıştırıcı imalatı ve test edilmesi. DEUFMD 2022; 24(71): 403–414.
  • [37] Ginoux G, Wu X, Laqraa C, Soulat D, Paux J, Ferreira M, Labanieh AR, Allaoui S. Continuous additive manufacturing of hemp yarn-reinforced biocomposites with improved impregnation method. Composites Science and Technology 2024; 250: 110561.
  • [38] Gunti R, Ratna Prasad AV, Gupta AVSSKS. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites 2018; 39(4): 1125–1136.
  • [39] Oliver-Ortega H, Tarrés Q, Mutjé P, Delgado-Aguilar M, Méndez JA, Espinach FX. Impact strength and water uptake behavior of bleached kraft softwood-reinforced PLA composites as alternative to PP-based materials. Polymers 2020; 12(9): 2144.
  • [40] Averett RD, Realff ML, Jacob K, Cakmak M, Yalcin B. The mechanical behavior of poly(lactic acid) unreinforced and nanocomposite films subjected to monotonic and fatigue loading conditions. Journal of Composite Materials 2011; 45(26): 2717–2727.
  • [41] Mileo PGM, Krauter CM, Sanders JM, Browning AR, Halls MD. Molecular-scale exploration of mechanical properties and interactions of poly(lactic acid) with cellulose and chitin. ACS Omega 2023; 8(45): 42417–42428.
  • [42] Xu H, Xie L, Jiang X, Hakkarainen M, Chen J-B, Zhong G-J, Li Z-M. Structural basis for unique hierarchical cylindrites induced by ultrahigh shear gradient in single natural fiber reinforced poly(lactic acid) green composites. Biomacromolecules 2014; 15(5): 1676–1686.
  • [43] Ketata N, Ejday M, Grohens Y, Seantier B, Guermazi N. Investigation of the hybridization effect on mechanical properties of natural fiber reinforced biosourced composites. Journal of Composite Materials 2024; 58(17): 1965–1985.
  • [44] Wan Ishak WH, Rosli NA, Ahmad I. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Sci. Rep. 2020; 10: 11342.
  • [45] Hao M, Wu H. Effect of in situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polymer Composites 2018; 39(S1): E174–E187.
  • [46] Liu H, Song W, Chen F, Guo L, Zhang J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011; 44(6): 1513–1522.
  • [47] Yu T, Sun F, Lu M, Li Y. Water absorption and hygrothermal aging behavior of short ramie fiber-reinforced poly(lactic acid) composites. Polymer Composites 2018; 39(4): 1098–1104.
  • [48] Yang Z, Feng X, Xu M, Rodrigue D. Properties of poplar fiber/PLA composites: Comparison on the effect of maleic anhydride and KH-550 modification of poplar fiber. Polymers 2020; 12(3): 729.
  • [49] Sarker F, Potluri P, Afroj S, Koncherry V, Novoselov KS, Karim N. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Appl. Mater. Interfaces 2019; 11(23): 21166–21176.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler, Polimerler ve Plastikler
Bölüm Araştırma Makalesi
Yazarlar

Muhammet Mevlüt Karaca 0000-0001-9644-3663

Fatih Huzeyfe Öztürk 0000-0001-8025-8236

Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 29 Eylül 2025
Erken Görünüm Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 4

Kaynak Göster

APA Karaca, M. M., & Öztürk, F. H. (2025). Layer-Paused FFF-Based Manufacturing of PLA-Hemp Composites: Mechanical Behavior and Failure Morphology. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 13(4), 1431-1440. https://doi.org/10.29109/gujsc.1747040

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526